- -

Precise eye localization using HOG descriptors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Precise eye localization using HOG descriptors

Show full item record

Monzó Ferrer, D.; Albiol Colomer, A.; Sastre, J.; Albiol Colomer, AJ. (2011). Precise eye localization using HOG descriptors. Machine Vision and Applications. 22(3):471-480. https://doi.org/10.1007/s00138-010-0273-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58789

Files in this item

Item Metadata

Title: Precise eye localization using HOG descriptors
Author: Monzó Ferrer, David Albiol Colomer, Alberto Sastre, Jorge Albiol Colomer, Antonio José
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine ...[+]
Subjects: AdaBoost , Eye detection , HOG , Local feature descriptors , Commercial software , Descriptors , Eye localization , Eye location , Haar-like features , Local feature , Novel algorithm , Pre-selected , Algorithms , Eye protection , Adaptive boosting
Copyrigths: Reserva de todos los derechos
Source:
Machine Vision and Applications. (issn: 0932-8092 ) (eissn: 1432-1769 )
DOI: 10.1007/s00138-010-0273-0
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s00138-010-0273-0
Project ID:
info:eu-repo/grantAgreement/MICINN//TEC2009-09146/ES/Nuevas Tecnicas Para Video Vigilancia Inteligente/
Thanks:
This work has been partially supported by the grant TEC2009-09146 of the Spanish Government.
Type: Artículo

References

Riopka, T., Boult, T.: The eyes have it. In: Proceedings of ACM SIGMM Multimedia Biometrics Methods and Applications Workshop, Berkeley, CA, pp. 9–16 (2003)

Kim C., Choi C.: Image covariance-based subspace method for face recognition. Pattern Recognit. 40(5), 1592–1604 (2007)

Wang, P., Green, M., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 3, San Diego, CA, pp. 164–171 (2005) [+]
Riopka, T., Boult, T.: The eyes have it. In: Proceedings of ACM SIGMM Multimedia Biometrics Methods and Applications Workshop, Berkeley, CA, pp. 9–16 (2003)

Kim C., Choi C.: Image covariance-based subspace method for face recognition. Pattern Recognit. 40(5), 1592–1604 (2007)

Wang, P., Green, M., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 3, San Diego, CA, pp. 164–171 (2005)

Amir A., Zimet L., Sangiovanni-Vincentelli A., Kao S.: An embedded system for an eye-detection sensor. Comput. Vis. Image Underst. 98(1), 104–123 (2005)

Zhu Z., Ji Q.: Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput. Vis. Image Underst. 98(1), 124–154 (2005)

Huang, W., Mariani, R.: Face detection and precise eyes location. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, Washington, DC, USA, pp. 722–727 (2000)

Brunelli R., Poggio T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)

Guan, Y.: Robust eye detection from facial image based on multi-cue facial information. In: Proceedings of IEEE International Conference on Control and Automation, pp. 1775–1778 (2007)

Rizon, M., Kawaguchi, T.: Automatic eye detection using intensity and edge information. In: Proceedings of TENCON, vol. 2, Kuala Lumpur, Malaysia, pp. 415–420 (2000)

Han, C., Liao, H., Yu, K., Chen, L.: Fast face detection via morphology-based pre-processing. In: Proceedings of the 9th International Conference on Image Analysis and Processing, vol. 2. Springer, London, UK, pp. 469–476 (1997)

Song J., Chi Z., Liu J.: A robust eye detection method using combined binary edge and intensity information. Pattern Recognit. 39(6), 1110–1125 (2006)

Campadelli, P., Lanzarotti, R., Lipori, G.: Precise eye localization through a general-to-specific model definition. In: Proceedings of the British Machine Vision Conference, Edinburgh, Scotland, pp. 187–196 (2006)

Smeraldi F., Carmona O., Bign J.: Saccadic search with gabor features applied to eye detection and real-time head tracking. Image Vis. Comput. 18(4), 323–329 (1998)

Sirohey S. A., Rosenfeld A.: Eye detection in a face image using linear and nonlinear filters. Pattern Recognit. 34(7), 1367–1391 (2001)

Ma, Y., Ding, X., Wang, Z., Wang, N.: Robust precise eye location under probabilistic framework. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, pp. 339–344 (2004)

Lu, H., Zhang, W., Yang D.: Eye detection based on rectangle features and pixel-pattern-based texture features. In: Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, pp. 746–749 (2007)

Jin, L., Yuan, X., Satoh, S., Li, J., Xia, L.: A hybrid classifier for precise and robust eye detection. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, Hong Kong, pp. 731–735 (2006)

Vapnik V. N.: The Nature of Statistical Learning Theory. Springer, New York Inc, New York, NY (1995)

Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, pp. 511–518 (2001)

Fasel I., Fortenberry B., Movellan J.: A generative framework for real time object detection and classification. Comput. Vis. Image Underst. 98(1), 182–210 (2005)

Huang J., Wechsler H.: Visual routines for eye location using learning and evolution. IEEE Trans. Evolut. Comput. 4(1), 73–82 (2000)

Behnke S.: Face localization and tracking in the neural abstraction pyramid. Neural Comput. Appl. 14(2), 97–103 (2005)

Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 9th European Conference on Computer Vision, vol. 2, San Diego, CA, pp. 886–893 (2005)

Albiol A., Monzo D., Martin A., Sastre J., Albiol A.: Face recognition using hog-ebgm. Pattern Recognit. Lett. 29(10), 1537–1543 (2008)

Lowe D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

Bicego, M., Lagorio, A., Grosso, E., Tistarelli M.: On the use of SIFT features for face authentication. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshop, New York, p. 35 (2006)

Yang M.-H., Kriegman D., Ahuja N.: Detecting faces in images: a survey. Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)

Jain A., Murty M., Flynn P.: Data clustering: a review. ACM Comput. Syst. 31(3), 264–323 (1999)

Mikolajczyk K., Schmid C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

Humanscan, BioID database. http://www.bioid.com

Peer, P.: CVL Face database, University of Ljubjana. http://www.fri.uni-lj.si/en

Phillips P. J., Moon H., Rizvi S. A., Rauss P. J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Jin, C., Hoffman, K., Marques, J., Jaesik, M., Worek, W.: Overview of the face recognition grand challenge. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, San Diego, CA, pp. 947–954 (2005)

Jesorsky, O., Kirchberg, K.J., Frischholz, R.: Robust face detection using the hausdorff distance. In: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, Springer, London, UK, pp. 90–95 (2001)

Neurotechnologija, Biometrical and Artificial Intelligence Technologies, Verilook SDK. http://www.neurotechnologija.com

Witten I., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn: Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)

Turk M., Pentland A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record