- -

Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data

Mostrar el registro completo del ítem

Hermosilla, T.; Coops, N.; Ruiz Fernández, LÁ.; Moskal, M. (2014). Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sensing Letters. 5(4):332-341. https://doi.org/10.1080/2150704X.2014.903350

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59037

Ficheros en el ítem

Metadatos del ítem

Título: Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data
Autor: Hermosilla, T. Coops, Nicholas Ruiz Fernández, Luis Ángel Moskal, Monika
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Fecha difusión:
Resumen:
[EN] When processing scanning LiDAR data, it is commonly assumed that the extracted full-waveform LiDAR pulse registers truly vertical information of forest canopies. This assumption may lead to uncertain results for the ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Remote Sensing Letters. (issn: 2150-704X )
DOI: 10.1080/2150704X.2014.903350
Editorial:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/2150704X.2014.903350
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//BEST%2F2012%2F235/
Descripción: This is an author's accepted manuscript of an article published in “Remote Sensing Letters", Volume 5, Issue 4, 2014; copyright Taylor & Francis; available online at: http://www.tandfonline.com/doi/abs/10.1080/2150704X.2014.903350
Agradecimientos:
This paper was developed as a result of a visiting scholar grant funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering – TEE Project. The ...[+]
Tipo: Artículo

References

Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5

Blair, J. B., Rabine, D. L., & Hofton, M. A. (1999). The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 115-122. doi:10.1016/s0924-2716(99)00002-7

BOUDREAU, J., NELSON, R., MARGOLIS, H., BEAUDOIN, A., GUINDON, L., & KIMES, D. (2008). Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment, 112(10), 3876-3890. doi:10.1016/j.rse.2008.06.003 [+]
Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5

Blair, J. B., Rabine, D. L., & Hofton, M. A. (1999). The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 115-122. doi:10.1016/s0924-2716(99)00002-7

BOUDREAU, J., NELSON, R., MARGOLIS, H., BEAUDOIN, A., GUINDON, L., & KIMES, D. (2008). Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment, 112(10), 3876-3890. doi:10.1016/j.rse.2008.06.003

Bretar, F., M. Pierrot-Deseilligny, and M. Roux. 2004. “Solving the Strip Adjustment Problem of 3D Airborne Lidar Data.” IEEE International Geoscience and Remote Sensing Symposium Proceedings, Anchorage, AK, September 20–24, 4734–4737.

Buddenbaum, H., Seeling, S., & Hill, J. (2013). Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. International Journal of Remote Sensing, 34(13), 4511-4524. doi:10.1080/01431161.2013.776721

Carabajal, C. C., & Harding, D. J. (2005). ICESat validation of SRTM C-band digital elevation models. Geophysical Research Letters, 32(22), n/a-n/a. doi:10.1029/2005gl023957

Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., … Prince, S. (2002). Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79(2-3), 305-319. doi:10.1016/s0034-4257(01)00281-4

Ferraz, A., G. Goncalves, P. Soares, M. Tome, C. Mallet, S. Jacquemoud, F. Bretar, and L. Pereira. 2012. “Comparing Small-footprint LiDAR and Forest Inventory Data for Single Strata Biomass Estimation – A Case Study over a Multi-layered Mediterranean Forest.” IEEE Geoscience and Remote Sensing Symposium (IGARSS), Munich, July 22–27, 6384–6387.

Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stoker, J. M. (2005). Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1-3), 189-209. doi:10.1016/j.foreco.2004.12.001

Harding, D. J. (2005). ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters, 32(21). doi:10.1029/2005gl023471

Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi:10.1016/j.jag.2010.09.010

Hermosilla, T., Ruiz, L. A., Kazakova, A. N., Coops, N. C., & Moskal, L. M. (2014). Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire, 23(2), 224. doi:10.1071/wf13086

Höfle, B., Hollaus, M., & Hagenauer, J. (2012). Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 134-147. doi:10.1016/j.isprsjprs.2011.12.003

HYDE, P., DUBAYAH, R., PETERSON, B., BLAIR, J., HOFTON, M., HUNSAKER, C., … WALKER, W. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems. Remote Sensing of Environment, 96(3-4), 427-437. doi:10.1016/j.rse.2005.03.005

Kim, Y., Yang, Z., Cohen, W. B., Pflugmacher, D., Lauver, C. L., & Vankat, J. L. (2009). Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment, 113(11), 2499-2510. doi:10.1016/j.rse.2009.07.010

Koetz, B., Morsdorf, F., Sun, G., Ranson, K. J., Itten, K., & Allgower, B. (2006). Inversion of a Lidar Waveform Model for Forest Biophysical Parameter Estimation. IEEE Geoscience and Remote Sensing Letters, 3(1), 49-53. doi:10.1109/lgrs.2005.856706

Kronseder, K., Ballhorn, U., Böhm, V., & Siegert, F. (2012). Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 18, 37-48. doi:10.1016/j.jag.2012.01.010

Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment, 70(3), 339-361. doi:10.1016/s0034-4257(99)00052-8

Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito-Santo, F., … de Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32(22), n/a-n/a. doi:10.1029/2005gl023971

Mallet, C., & Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 1-16. doi:10.1016/j.isprsjprs.2008.09.007

Ni-Meister, W., Jupp, D. L. B., & Dubayah, R. (2001). Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 1943-1958. doi:10.1109/36.951085

Pang, Y., Lefsky, M., Sun, G., & Ranson, J. (2011). Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar. Remote Sensing of Environment, 115(11), 2798-2809. doi:10.1016/j.rse.2010.08.025

Reitberger, J., Krzystek, P., & Stilla, U. (2008). Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. International Journal of Remote Sensing, 29(5), 1407-1431. doi:10.1080/01431160701736448

Reitberger, J., Schnörr, C., Krzystek, P., & Stilla, U. (2009). 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 561-574. doi:10.1016/j.isprsjprs.2009.04.002

Sarrazin, M. J. D., van Aardt, J. A. N., Asner, G. P., McGlinchy, J., Messinger, D. W., & Wu, J. (2012). Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems. Canadian Journal of Remote Sensing, 37(6), 653-665. doi:10.5589/m12-007

SUN, G., RANSON, K., KIMES, D., BLAIR, J., & KOVACS, K. (2008). Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sensing of Environment, 112(1), 107-117. doi:10.1016/j.rse.2006.09.036

Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4

Wu, J., van Aardt, J. A. N., McGlinchy, J., & Asner, G. P. (2012). A Robust Signal Preprocessing Chain for Small-Footprint Waveform LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3242-3255. doi:10.1109/tgrs.2011.2178420

Yang, W., Ni-Meister, W., & Lee, S. (2011). Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model. Remote Sensing of Environment, 115(11), 2810-2822. doi:10.1016/j.rse.2010.02.021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem