- -

Supporting the collaborative decision-making process in an automotive supply chain with a multi-agent system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supporting the collaborative decision-making process in an automotive supply chain with a multi-agent system

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Hormazábal, Jorge Esteban es_ES
dc.contributor.author Lyons, Andrew C. es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Poler, R. es_ES
dc.contributor.author Ismail, Hossam es_ES
dc.date.accessioned 2015-12-21T14:14:08Z
dc.date.available 2015-12-21T14:14:08Z
dc.date.issued 2014-06-11
dc.identifier.issn 0953-7287
dc.identifier.uri http://hdl.handle.net/10251/59096
dc.description.abstract Collaborative initiatives such as collaborative design, collaborative planning and forecasting, and open collective innovation are increasingly accepted as approaches that can effectively support decision-making (DM) processes in a range of different industries. However, justifying and demonstrating the benefits of collaborative solutions remains a challenge and has been under-researched. Demonstrating the feasibility of implementing collaborative solutions as opposed to traditional, linear and transactional solutions is even less evident. The purpose of this paper is to conceive a collaborative solution that supports the multi-level DM process in a real, tree-based automotive supply chain environment. The hypothesis presented posits that by sharing information collaboratively, improvements in terms of the profit and service levels will be found within the supply chain and at every supply chain node. es_ES
dc.description.sponsorship The authors thanks the support from the project 'Operations Design and Management in Global Supply Chains (GLOBOP)' (Ref. DPI2012-38061-C02-01), funded by the Ministry of Science and Education of Spain, for the supply chain environment research contribution. In addition, we thank the EWG-DSS and their four expert anonymous referees as well as the guest editorial board for their useful suggestions and criticism on earlier versions of this paper. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Production Planning and Control es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Collaborative decision-making es_ES
dc.subject Decision support systems es_ES
dc.subject Supply chain management es_ES
dc.subject Automotive industry es_ES
dc.subject Multi-agent systems es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Supporting the collaborative decision-making process in an automotive supply chain with a multi-agent system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/09537287.2013.798086
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2012-38061-C02-01/ES/DISEÑO Y GESTION DE OPERACIONES EN CADENAS GLOBALES DE SUMINISTRO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación de Gestión e Ingeniería de la Producción - Centre d'Investigació de Gestió i Enginyeria de la Producció es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Hernández Hormazábal, JE.; Lyons, AC.; Mula, J.; Poler, R.; Ismail, H. (2014). Supporting the collaborative decision-making process in an automotive supply chain with a multi-agent system. Production Planning and Control. 25(8):662-678. https://doi.org/10.1080/09537287.2013.798086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/09537287.2013.798086 es_ES
dc.description.upvformatpinicio 662 es_ES
dc.description.upvformatpfin 678 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 265585 es_ES
dc.identifier.eissn 1366-5871
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aknine, S. (2011). A Multi-Agent Model for Overlapping Negotiations. Group Decision and Negotiation, 21(6), 747-790. doi:10.1007/s10726-011-9247-5 es_ES
dc.description.references Azevedo, A. L., Toscano, C., Sousa, J. P., & Soares, A. L. (2004). An advanced agent-based order planning system for dynamic networked enterprises. Production Planning & Control, 15(2), 133-144. doi:10.1080/09537280410001662538 es_ES
dc.description.references Brandolese, A., Brun, A., & Portioli-Staudacher, A. (2000). A multi-agent approach for the capacity allocation problem. International Journal of Production Economics, 66(3), 269-285. doi:10.1016/s0925-5273(00)00004-9 es_ES
dc.description.references Brintrup, A. (2010). Behaviour adaptation in the multi-agent, multi-objective and multi-role supply chain. Computers in Industry, 61(7), 636-645. doi:10.1016/j.compind.2010.03.010 es_ES
dc.description.references Caridi, M., Cigolini *, R., & De Marco, D. (2005). Improving supply-chain collaboration by linking intelligent agents to CPFR. International Journal of Production Research, 43(20), 4191-4218. doi:10.1080/00207540500142134 es_ES
dc.description.references Cavalieri, S., Cesarotti, V., & Introna, V. (2003). A Multiagent Model for Coordinated Distribution Chain Planning. Journal of Organizational Computing and Electronic Commerce, 13(3-4), 267-287. doi:10.1080/10919392.2003.9681164 es_ES
dc.description.references Chan, F. T. S., & Chan, H. K. (2004). A new model for manufacturing supply chain networks: A multiagent approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(4), 443-454. doi:10.1243/095440504323055551 es_ES
dc.description.references Chan, H. K., & Kumar, V. (2014). Special Issue – Applications of reference models for supply-chain integration. Production Planning & Control, 25(13-14), 1059-1064. doi:10.1080/09537287.2013.808834 es_ES
dc.description.references Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016 es_ES
dc.description.references Chen, Y., Y. Peng, T. Finin, Y. Labrou, and S. Cost. 1999. “A Negotiation-Based Multi-Agent Systems for Supply Chain Management.” Accessed June 14, 2012 http://www.research.ibm.com/CoopDS/Agents99/chen.pdf. es_ES
dc.description.references De la Fuente, M. V., Ros, L., & Ortiz, A. (2010). Enterprise modelling methodology for forward and reverse supply chain flows integration. Computers in Industry, 61(7), 702-710. doi:10.1016/j.compind.2010.05.010 es_ES
dc.description.references Fatima, S. S., M. Wooldridge, and N. R. Jennings. 2002. “Optimal Negotiation Strategies for Agents with Incomplete Information.” Revised Papers from the 8th International Workshop on Intelligent Agents VIII, Springer, Berlin: 377–392. es_ES
dc.description.references Forget, P., D’Amours, S., Frayret, J.-M., & Gaudreault, J. (2009). Study of the performance of multi-behaviour agents for supply chain planning. Computers in Industry, 60(9), 698-708. doi:10.1016/j.compind.2009.05.005 es_ES
dc.description.references Goel, A. K., Gupta, S. L., Srinivasan, S., & Jha, B. K. (2011). Integration of Supply Chain Management Using Multiagent System & Negotiation Model. International Journal of Computer and Electrical Engineering, 375-378. doi:10.7763/ijcee.2011.v3.344 es_ES
dc.description.references Hadeli, Valckenaers, P., Kollingbaum, M., & Van Brussel, H. (2004). Multi-agent coordination and control using stigmergy. Computers in Industry, 53(1), 75-96. doi:10.1016/s0166-3615(03)00123-4 es_ES
dc.description.references Hernández, J. E. 2011. “Propuesta de una arquitectura para el soporte de la planificación de la producción colaborativa en cadenas de suministro de tipo árbol.” PhD Thesis. es_ES
dc.description.references Hernández, J. E., Mula, J., Poler, R., & Lyons, A. C. (2013). Collaborative Planning in Multi-tier Supply Chains Supported by a Negotiation-Based Mechanism and Multi-agent System. Group Decision and Negotiation, 23(2), 235-269. doi:10.1007/s10726-013-9358-2 es_ES
dc.description.references Hernández, J. E., Mula, J., Ferriols, F. J., & Poler, R. (2008). A conceptual model for the production and transport planning process: An application to the automobile sector. Computers in Industry, 59(8), 842-852. doi:10.1016/j.compind.2008.06.004 es_ES
dc.description.references Hernández, J. E., Poler, R., Mula, J., & Lario, F. C. (2010). The Reverse Logistic Process of an Automobile Supply Chain Network Supported by a Collaborative Decision-Making Model. Group Decision and Negotiation, 20(1), 79-114. doi:10.1007/s10726-010-9205-7 es_ES
dc.description.references Holweg, M., Disney, S., Holmström, J., & Småros, J. (2005). Supply Chain Collaboration: European Management Journal, 23(2), 170-181. doi:10.1016/j.emj.2005.02.008 es_ES
dc.description.references Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). Autonomous Agents and Multi-Agent Systems, 1(1), 7-38. doi:10.1023/a:1010090405266 es_ES
dc.description.references Julka, N., Srinivasan, R., & Karimi, I. (2002). Agent-based supply chain management—1: framework. Computers & Chemical Engineering, 26(12), 1755-1769. doi:10.1016/s0098-1354(02)00150-3 es_ES
dc.description.references Jung, H., Frank Chen, F., & Jeong, B. (2008). Decentralized supply chain planning framework for third party logistics partnership. Computers & Industrial Engineering, 55(2), 348-364. doi:10.1016/j.cie.2007.12.017 es_ES
dc.description.references Jung, H., & Jeong, B. (2004). Decentralised production-distribution planning system using collaborative agents in supply chain network. The International Journal of Advanced Manufacturing Technology, 25(1-2), 167-173. doi:10.1007/s00170-003-1792-x es_ES
dc.description.references Kaihara, T., Fujii, S., & Iwata, K. (2006). Virtual Enterprise Coalition Strategy with Game Theoretic Multi-Agent Paradigm. CIRP Annals, 55(1), 513-516. doi:10.1016/s0007-8506(07)60471-5 es_ES
dc.description.references Karageorgos, A., Mehandjiev, N., Weichhart, G., & Hämmerle, A. (2003). Agent-based optimisation of logistics and production planning. Engineering Applications of Artificial Intelligence, 16(4), 335-348. doi:10.1016/s0952-1976(03)00076-9 es_ES
dc.description.references KWON, O., IM, G., & LEE, K. (2007). MACE-SCM: A multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Systems with Applications, 33(3), 690-705. doi:10.1016/j.eswa.2006.06.015 es_ES
dc.description.references Lai, G., Li, C., & Sycara, K. (2006). Efficient Multi-Attribute Negotiation with Incomplete Information. Group Decision and Negotiation, 15(5), 511-528. doi:10.1007/s10726-006-9041-y es_ES
dc.description.references Lejeune, M. A., & Yakova, N. (2004). On characterizing the 4 C’s in supply chain management. Journal of Operations Management, 23(1), 81-100. doi:10.1016/j.jom.2004.09.004 es_ES
dc.description.references Li, G., Yang, H., Sun, L., & Sohal, A. S. (2009). The impact of IT implementation on supply chain integration and performance. International Journal of Production Economics, 120(1), 125-138. doi:10.1016/j.ijpe.2008.07.017 es_ES
dc.description.references Liang, W.-Y., & Huang, C.-C. (2006). Agent-based demand forecast in multi-echelon supply chain. Decision Support Systems, 42(1), 390-407. doi:10.1016/j.dss.2005.01.009 es_ES
dc.description.references Lin, F., Kuo, H., & Lin, S. (2008). The enhancement of solving the distributed constraint satisfaction problem for cooperative supply chains using multi-agent systems. Decision Support Systems, 45(4), 795-810. doi:10.1016/j.dss.2008.02.001 es_ES
dc.description.references Liu, S., Young, R. I. M., & Ding, L. (2011). An integrated decision support system for global manufacturing co-ordination in the automotive industry. International Journal of Computer Integrated Manufacturing, 24(4), 285-301. doi:10.1080/0951192x.2011.554869 es_ES
dc.description.references Lyons, A., Coronado, A., & Michaelides, Z. (2006). The relationship between proximate supply and build‐to‐order capability. Industrial Management & Data Systems, 106(8), 1095-1111. doi:10.1108/02635570610710773 es_ES
dc.description.references Manthou, V., Vlachopoulou, M., & Folinas, D. (2004). Virtual e-Chain (VeC) model for supply chain collaboration. International Journal of Production Economics, 87(3), 241-250. doi:10.1016/s0925-5273(03)00218-4 es_ES
dc.description.references Crespo Marquez, A., Bianchi, C., & Gupta, J. N. D. (2004). Operational and financial effectiveness of e-collaboration tools in supply chain integration. European Journal of Operational Research, 159(2), 348-363. doi:10.1016/j.ejor.2003.08.020 es_ES
dc.description.references Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007 es_ES
dc.description.references Nahm, Y.-E., & Ishikawa, H. (2005). A hybrid multi-agent system architecture for enterprise integration using computer networks. Robotics and Computer-Integrated Manufacturing, 21(3), 217-234. doi:10.1016/j.rcim.2004.07.016 es_ES
dc.description.references Nishioka, Y. (2004). Collaborative agents for production planning and scheduling (CAPPS): a challenge to develop a new software system architecture for manufacturing management in Japan. International Journal of Production Research, 42(17), 3355-3368. doi:10.1080/00207540410001695989 es_ES
dc.description.references Peterson, J. L. (1977). Petri Nets. ACM Computing Surveys, 9(3), 223-252. doi:10.1145/356698.356702 es_ES
dc.description.references Reaidy, J., Massotte, P., & Diep, D. (2006). Comparison of negotiation protocols in dynamic agent-based manufacturing systems. International Journal of Production Economics, 99(1-2), 117-130. doi:10.1016/j.ijpe.2004.12.011 es_ES
dc.description.references Sadeh, N. M., D. W. Hildum, D. Kjenstadand, and A. Tseng. 1999. “MASCOT: An Agent-Based Architecture for Coordinated Mixed-Initiative Supply Chain Planning and Scheduling. Third International Conference on Autonomous Agents (Agents ‘99).” Workshop on Agent-Based Decision Support for Managing the Internet-Enabled Supply Chain, Seattle, US. es_ES
dc.description.references Schneeweiss, C., & Zimmer, K. (2004). Hierarchical coordination mechanisms within the supply chain. European Journal of Operational Research, 153(3), 687-703. doi:10.1016/s0377-2217(02)00801-9 es_ES
dc.description.references Uçkun, C., Karaesmen, F., & Savaş, S. (2008). Investment in improved inventory accuracy in a decentralized supply chain. International Journal of Production Economics, 113(2), 546-566. doi:10.1016/j.ijpe.2007.10.012 es_ES
dc.description.references Van der Vaart, T., & van Donk, D. P. (2008). A critical review of survey-based research in supply chain integration. International Journal of Production Economics, 111(1), 42-55. doi:10.1016/j.ijpe.2006.10.011 es_ES
dc.description.references Yao, Y., Evers, P. T., & Dresner, M. E. (2007). Supply chain integration in vendor-managed inventory. Decision Support Systems, 43(2), 663-674. doi:10.1016/j.dss.2005.05.021 es_ES
dc.description.references Zhang, X. S., & Lesser, V. (2012). Meta-level Coordination for Solving Distributed Negotiation Chains in Semi-cooperative Multi-agent Systems. Group Decision and Negotiation, 22(4), 681-713. doi:10.1007/s10726-012-9287-5 es_ES
dc.description.references Xiaoqin Zhang, Lesser, V., & Wagner, T. (2006). Integrative negotiation among agents situated in organizations. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(1), 19-30. doi:10.1109/tsmcc.2005.860572 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem