- -

Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications

Mostrar el registro completo del ítem

Montagut Ferizzola, YJ.; García Narbón, JV.; Jiménez Jiménez, Y.; March Iborra, MDC.; Montoya Baides, Á.; Arnau Vives, A. (2011). Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications. Review of Scientific Instruments. 82(6):1-14. https://doi.org/10.1063/1.3598340

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59122

Ficheros en el ítem

Metadatos del ítem

Título: Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications
Autor: Montagut Ferizzola, Yeison Javier García Narbón, José Vicente Jiménez Jiménez, Yolanda March Iborra, Mª Del Carmen Montoya Baides, Ángel Arnau Vives, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Fecha difusión:
Resumen:
The improvement of sensitivity in quartz crystal microbalance (QCM) applications has been addressed in the last decades by increasing the sensor fundamental frequency, following the increment of the frequencymass sensitivity ...[+]
Palabras clave: Carbaryl , Constant frequency , Frequency shift , Fundamental frequencies , Low molecular weight , Sensitivity improvements , Characterization , Frequency shift keying , High energy physics , Immunosensors , Insecticides , Phase shift , Piezoelectric devices , Quartz , Quartz crystal microbalances , Article , Calibration , Comparative study , Electricity , Genetic procedures , Immunoassay , Instrumentation , Quartz crystal microbalance , Reproducibility , Biosensing Techniques , Quartz Crystal Microbalance Techniques , Reproducibility of Results
Derechos de uso: Reserva de todos los derechos
Fuente:
Review of Scientific Instruments. (issn: 0034-6748 ) (eissn: 1089-7623 )
DOI: 10.1063/1.3598340
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.3598340
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2009-13511/ES/Inmunosensor Piezoelectrico De Alta Frecuencia Para La Deteccion De Bisfenol-A Y Ftalatos En Alimentos Envasados/
Agradecimientos:
The authors are grateful to the Spanish Ministry of Science and Technology for the financial support to this research under contract reference AGL2009-13511, and to the company Advanced Wave Sensors S. L. (www.awsensors.com) ...[+]
Tipo: Artículo

References

Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937

Janshoff, A., Galla, H.-J., & Steinem, C. (2000). Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors? Angewandte Chemie, 39(22), 4004-4032. doi:10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2

March, C., Manclús, J. J., Jiménez, Y., Arnau, A., & Montoya, A. (2009). A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta, 78(3), 827-833. doi:10.1016/j.talanta.2008.12.058 [+]
Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937

Janshoff, A., Galla, H.-J., & Steinem, C. (2000). Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors? Angewandte Chemie, 39(22), 4004-4032. doi:10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2

March, C., Manclús, J. J., Jiménez, Y., Arnau, A., & Montoya, A. (2009). A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta, 78(3), 827-833. doi:10.1016/j.talanta.2008.12.058

Rocha-Gaso, M.-I., March-Iborra, C., Montoya-Baides, Á., & Arnau-Vives, A. (2009). Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors, 9(7), 5740-5769. doi:10.3390/s9095740

Richert, L., Lavalle, P., Vautier, D., Senger, B., Stoltz, J.-F., Schaaf, P., … Picart, C. (2002). Cell Interactions with Polyelectrolyte Multilayer Films. Biomacromolecules, 3(6), 1170-1178. doi:10.1021/bm0255490

Höök, F., Ray, A., Nordén, B., & Kasemo, B. (2001). Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements. Langmuir, 17(26), 8305-8312. doi:10.1021/la0107704

Ben-Dov, I., Willner, I., & Zisman, E. (1997). Piezoelectric Immunosensors for Urine Specimens ofChlamydia trachomatisEmploying Quartz Crystal Microbalance Microgravimetric Analyses. Analytical Chemistry, 69(17), 3506-3512. doi:10.1021/ac970216s

Nirschl, M., Blüher, A., Erler, C., Katzschner, B., Vikholm-Lundin, I., Auer, S., … Mertig, M. (2009). Film bulk acoustic resonators for DNA and protein detection and investigation of in vitro bacterial S-layer formation. Sensors and Actuators A: Physical, 156(1), 180-184. doi:10.1016/j.sna.2009.02.021

Fung, Y. S., & Wong, Y. Y. (2001). Self-Assembled Monolayers as the Coating in a Quartz Piezoelectric Crystal Immunosensor To Detect Salmonella in Aqueous Solution. Analytical Chemistry, 73(21), 5302-5309. doi:10.1021/ac010655y

Zhou, X., Liu, L., Hu, M., Wang, L., & Hu, J. (2002). Detection of hepatitis B virus by piezoelectric biosensor. Journal of Pharmaceutical and Biomedical Analysis, 27(1-2), 341-345. doi:10.1016/s0731-7085(01)00538-6

Gabl, R., Green, E., Schreiter, M., Feucht, H. D., Zeininger, H., Primig, R., … Wersing, W. (s. f.). Novel integrated FBAR sensors: a universal technology platform for bio- and gas-detection. Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498). doi:10.1109/icsens.2003.1279132

Gabl, R., Feucht, H.-D., Zeininger, H., Eckstein, G., Schreiter, M., Primig, R., … Wersing, W. (2004). First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics, 19(6), 615-620. doi:10.1016/s0956-5663(03)00259-8

Wingqvist, G., Yantchev, V., & Katardjiev, I. (2008). Mass sensitivity of multilayer thin film resonant BAW sensors. Sensors and Actuators A: Physical, 148(1), 88-95. doi:10.1016/j.sna.2008.07.023

Weber, J., Albers, W. M., Tuppurainen, J., Link, M., Gabl, R., Wersing, W., & Schreiter, M. (2006). Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators A: Physical, 128(1), 84-88. doi:10.1016/j.sna.2006.01.005

Lin, Z., Yip, C. M., Joseph, I. S., & Ward, M. D. (1993). Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Analytical Chemistry, 65(11), 1546-1551. doi:10.1021/ac00059a011

Bjurstrom, J., Wingqvist, G., & Katardjiev, I. (2006). Synthesis of textured thin piezoelectric AlN films with a nonzero C-axis mean tilt for the fabrication of shear mode resonators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(11), 2095-2100. doi:10.1109/tuffc.2006.149

Wingqvist, G., Bjurström, J., Liljeholm, L., Yantchev, V., & Katardjiev, I. (2007). Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sensors and Actuators B: Chemical, 123(1), 466-473. doi:10.1016/j.snb.2006.09.028

Wingqvist, G., Anderson, H., Lennartsson, C., Weissbach, T., Yantchev, V., & Lloyd Spetz, A. (2009). On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. Biosensors and Bioelectronics, 24(11), 3387-3390. doi:10.1016/j.bios.2009.04.021

Harding, G. L. (2001). Mass sensitivity of Love-mode acoustic sensors incorporating silicon dioxide and silicon-oxy-fluoride guiding layers. Sensors and Actuators A: Physical, 88(1), 20-28. doi:10.1016/s0924-4247(00)00491-x

Wang, Z., Cheeke, J. D. N., & Jen, C. K. (1994). Sensitivity analysis for Love mode acoustic gravimetric sensors. Applied Physics Letters, 64(22), 2940-2942. doi:10.1063/1.111976

Kalantar-Zadeh, K., Wlodarski, W., Chen, Y. Y., Fry, B. N., & Galatsis, K. (2003). Novel Love mode surface acoustic wave based immunosensors. Sensors and Actuators B: Chemical, 91(1-3), 143-147. doi:10.1016/s0925-4005(03)00079-0

Ogi, H., Naga, H., Fukunishi, Y., Hirao, M., & Nishiyama, M. (2009). 170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement. Analytical Chemistry, 81(19), 8068-8073. doi:10.1021/ac901267b

A. Arnau, V. Ferrari, D. Soares, and H. Perrot, inPiezoelectric Transducers and Applications, edited by A. Arnau, 2nd ed. (Springer Verlag, Berlin Heidelberg, 2008), ch. 5, pp. 117–186.

Eichelbaum, F., Borngräber, R., Schröder, J., Lucklum, R., & Hauptmann, P. (1999). Interface circuits for quartz-crystal-microbalance sensors. Review of Scientific Instruments, 70(5), 2537-2545. doi:10.1063/1.1149788

Schröder, J., Borngräber, R., Lucklum, R., & Hauptmann, P. (2001). Network analysis based interface electronics for quartz crystal microbalance. Review of Scientific Instruments, 72(6), 2750-2755. doi:10.1063/1.1370560

Doerner, S., Schneider, T., Schroder, J., & Hauptmann, P. (s. f.). Universal impedance spectrum analyzer for sensor applications. Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498). doi:10.1109/icsens.2003.1279007

Rodahl, M., & Kasemo, B. (1996). A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Review of Scientific Instruments, 67(9), 3238-3241. doi:10.1063/1.1147494

Rodahl, M., & Kasemo, B. (1996). Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sensors and Actuators B: Chemical, 37(1-2), 111-116. doi:10.1016/s0925-4005(97)80077-9

Barnes, C. (1992). Some new concepts on factors influencing the operational frequency of liquid-immersed quartz microbalances. Sensors and Actuators A: Physical, 30(3), 197-202. doi:10.1016/0924-4247(92)80120-r

Wessendorf, K. O. (s. f.). The Lever oscillator for use in high resistance resonator applications. 1993 IEEE International Frequency Control Symposium. doi:10.1109/freq.1993.367466

Borngraber, R., Schroder, J., Lucklum, R., & Hauptmann, P. (2002). Is an oscillator-based measurement adequate in a liquid environment? IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 49(9), 1254-1259. doi:10.1109/tuffc.2002.1041542

Ehahoun, H., Gabrielli, C., Keddam, M., Perrot, H., & Rousseau, P. (2002). Performances and Limits of a Parallel Oscillator for Electrochemical Quartz Crystal Microbalances. Analytical Chemistry, 74(5), 1119-1127. doi:10.1021/ac010883s

Martin, S. J., Spates, J. J., Wessendorf, K. O., Schneider, T. W., & Huber, R. J. (1997). Resonator/Oscillator Response to Liquid Loading. Analytical Chemistry, 69(11), 2050-2054. doi:10.1021/ac961194x

Ferrari, V., Marioli, D., & Taroni, A. (2001). Improving the accuracy and operating range of quartz microbalance sensors by a purposely designed oscillator circuit. IEEE Transactions on Instrumentation and Measurement, 50(5), 1119-1122. doi:10.1109/19.963169

Arnau, A., Sogorb, T., & Jiménez, Y. (2002). Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Review of Scientific Instruments, 73(7), 2724-2737. doi:10.1063/1.1484254

Jakoby, B., Art, G., & Bastemeijer, J. (2005). Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE Sensors Journal, 5(5), 1106-1111. doi:10.1109/jsen.2005.844330

Ferrari, M., Ferrari, V., Marioli, D., Taroni, A., Suman, M., & Dalcanale, E. (2006). In-Liquid Sensing of Chemical Compounds by QCM Sensors Coupled With High-Accuracy ACC Oscillator. IEEE Transactions on Instrumentation and Measurement, 55(3), 828-834. doi:10.1109/tim.2006.873792

Ferrari, M., Ferrari, V., & Kanazawa, K. K. (2008). Dual-harmonic oscillator for quartz crystal resonator sensors. Sensors and Actuators A: Physical, 145-146, 131-138. doi:10.1016/j.sna.2007.10.087

Riesch, C., & Jakoby, B. (2007). Novel Readout Electronics for Thickness Shear-Mode Liquid Sensors Compensating for Spurious Conductivity and Capacitances. IEEE Sensors Journal, 7(3), 464-469. doi:10.1109/jsen.2007.891931

Arnau, A., García, J. V., Jimenez, Y., Ferrari, V., & Ferrari, M. (2008). Improved electronic interfaces forAT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Review of Scientific Instruments, 79(7), 075110. doi:10.1063/1.2960571

Barnes, C. (1991). Development of quartz crystal oscillators for under-liquid sensing. Sensors and Actuators A: Physical, 29(1), 59-69. doi:10.1016/0924-4247(91)80032-k

Auge, J., Hauptmann, P., Eichelbaum, F., & Rösler, S. (1994). Quartz crystal microbalance sensor in liquids. Sensors and Actuators B: Chemical, 19(1-3), 518-522. doi:10.1016/0925-4005(93)00983-6

Auge, J., Hauptmann, P., Hartmann, J., Rösler, S., & Lucklum, R. (1995). New design for QCM sensors in liquids. Sensors and Actuators B: Chemical, 24(1-3), 43-48. doi:10.1016/0925-4005(95)85010-4

Chagnard, C., Gilbert, P., Watkins, A. N., Beeler, T., & Paul, D. W. (1996). An electronic oscillator with automatic gain control: EQCM applications. Sensors and Actuators B: Chemical, 32(2), 129-136. doi:10.1016/0925-4005(96)80121-3

Rodriguez-Pardo, L., Fariña, J., Gabrielli, C., Perrot, H., & Brendel, R. (2004). Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sensors and Actuators B: Chemical, 103(1-2), 318-324. doi:10.1016/j.snb.2004.04.060

Rodriguez-Pardo, L., Fariña, J., Gabrielli, C., Perrot, H., & Brendel, R. (2006). Quartz crystal oscillator circuit for high resolution microgravimetric sensors in fluids. Electronics Letters, 42(18), 1065. doi:10.1049/el:20061854

Wessendorf, K. O. (s. f.). The active-bridge oscillator for use with liquid loaded QCM sensors. Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218). doi:10.1109/freq.2001.956260

E. Benes, M. Schmid, M. Gröschl, P. Berlinger, H. Nowotny, and K. C. Harms, Proceedings of the Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, Vol. 2, p. 1023–1026 (1999).

J. Rabe, S. Büttgenbach, B. Zimmermann, and P. Hauptmann, 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, pp. 106–112 (2000).

Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2

Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6

Sagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023

Bustabad, E. A., Rose, D., Arnau, A., Garcia, G., Rodriguez-Pardo, L., Farina, J., … Lazerges, M. (2009). A biosensor for detection of DNA sequences based on a 50MHz QCM electronic oscillator circuit. 2009 IEEE Sensors. doi:10.1109/icsens.2009.5398346

Arnau, A., Montagut, Y., García, J. V., & Jiménez, Y. (2009). A different point of view on the sensitivity of quartz crystal microbalance sensors. Measurement Science and Technology, 20(12), 124004. doi:10.1088/0957-0233/20/12/124004

Martin, S. J., Granstaff, V. E., & Frye, G. C. (1991). Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 63(20), 2272-2281. doi:10.1021/ac00020a015

Keiji Kanazawa, K., & Gordon, J. G. (1985). The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. doi:10.1016/s0003-2670(00)82721-x

Pax, M., Rieger, J., Eibl, R. H., Thielemann, C., & Johannsmann, D. (2005). Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. The Analyst, 130(11), 1474. doi:10.1039/b504302f

Montrose, M. I. (1998). EMC and the Printed Circuit Board. doi:10.1002/047172310x

A. Montoya, A. Ocampo, and C. March, inPiezoelectric Transducers and Applications, edited by A. Arnau, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, 2008), Ch 12, pp. 289–306.

Abad, A., Primo, J., & Montoya, A. (1997). Development of an Enzyme-Linked Immunosorbent Assay to Carbaryl. 1. Antibody Production from Several Haptens and Characterization in Different Immunoassay Formats. Journal of Agricultural and Food Chemistry, 45(4), 1486-1494. doi:10.1021/jf9506904

Soares, D. M. (1993). A quartz microbalance with the capability of viscoelasticity measurements for in situ electrochemical investigations. Measurement Science and Technology, 4(5), 549-553. doi:10.1088/0957-0233/4/5/001

Fruböse, C., Doblhofer, K., & Soares, D. M. (1993). Impedance Analysis of the Quartz Micro-Balance Signal. Berichte der Bunsengesellschaft für physikalische Chemie, 97(3), 475-478. doi:10.1002/bbpc.19930970340

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem