- -

Controlling radiative loss in quantum well solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Controlling radiative loss in quantum well solar cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ekins-Daukes, N. J. es_ES
dc.contributor.author Lee, K.H. es_ES
dc.contributor.author Hirst, L. es_ES
dc.contributor.author Chan, A. es_ES
dc.contributor.author Fuehrer, M. es_ES
dc.contributor.author Adams, J. es_ES
dc.contributor.author Browne, B. es_ES
dc.contributor.author Barnham, K.W.J. es_ES
dc.contributor.author Stavrinou, P. es_ES
dc.contributor.author Connolly, James Patrick es_ES
dc.contributor.author Roberts, J. S. es_ES
dc.contributor.author Stevens, B. es_ES
dc.contributor.author Airey, R. es_ES
dc.contributor.author Kennedy, K. es_ES
dc.date.accessioned 2015-12-22T09:57:02Z
dc.date.available 2015-12-22T09:57:02Z
dc.date.issued 2013-07-03
dc.identifier.issn 0022-3727
dc.identifier.uri http://hdl.handle.net/10251/59127
dc.description.abstract [EN] The inclusion of quantum well layers in a solar cell provides a means for extending the absorption and therefore increasing the photocurrent of the cell. In 2009, a single-junction GaAsP/InGaAs quantum well solar cell attained a peak efficiency of 28.3% under solar concentration. Since then InGaP/MQW/Ge quantum well devices have attained efficiencies in excess of 40% under concentration and over 30% under AM0. The principle motivation for incorporating a quantum well stack into a multi-junction solar cell is to increase the photocurrent delivered by the middle junction over the conventional In0.01GaAs bulk junction. This enables additional current to flow through the top and middle cells, resulting in a sharp rise in efficiency. However, quantum wells also provide some freedom to manipulate the radiative recombination in the quantum well solar cell. We show that under radiatively dominated, anisotropic emission, strong radiative coupling between sub-cells takes place, resulting in a multi-junction solar cell that is tolerant to daily and seasonal changes to the solar spectrum. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Physics D: Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Controlling radiative loss in quantum well solar cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0022-3727/46/26/264007
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Ekins-Daukes, NJ.; Lee, K.; Hirst, L.; Chan, A.; Fuehrer, M.; Adams, J.; Browne, B.... (2013). Controlling radiative loss in quantum well solar cells. Journal of Physics D: Applied Physics. 46(26):264007-264015. doi:10.1088/0022-3727/46/26/264007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0022-3727/46/26/264007 es_ES
dc.description.upvformatpinicio 264007 es_ES
dc.description.upvformatpfin 264015 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 26 es_ES
dc.relation.senia 246173 es_ES
dc.description.references Hirst, L. C., & Ekins-Daukes, N. J. (2010). Fundamental losses in solar cells. Progress in Photovoltaics: Research and Applications, 19(3), 286-293. doi:10.1002/pip.1024 es_ES
dc.description.references Markvart, T. (2007). The thermodynamics of optical étendue. Journal of Optics A: Pure and Applied Optics, 10(1), 015008. doi:10.1088/1464-4258/10/01/015008 es_ES
dc.description.references King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., … Karam, N. H. (2007). 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Applied Physics Letters, 90(18), 183516. doi:10.1063/1.2734507 es_ES
dc.description.references Chan, N. L. A., Ekins-Daukes, N. J., Adams, J. G. J., Lumb, M. P., Gonzalez, M., Jenkins, P. P., … Walters, R. J. (2012). Optimal Bandgap Combinations—Does Material Quality Matter? IEEE Journal of Photovoltaics, 2(2), 202-208. doi:10.1109/jphotov.2011.2180513 es_ES
dc.description.references Guter, W., Schöne, J., Philipps, S. P., Steiner, M., Siefer, G., Wekkeli, A., … Dimroth, F. (2009). Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Applied Physics Letters, 94(22), 223504. doi:10.1063/1.3148341 es_ES
dc.description.references Nelson, J., Paxman, M., Barnham, K. W. J., Roberts, J. S., & Button, C. (1993). Steady-state carrier escape from single quantum wells. IEEE Journal of Quantum Electronics, 29(6), 1460-1468. doi:10.1109/3.234396 es_ES
dc.description.references Paxman, M., Nelson, J., Braun, B., Connolly, J., Barnham, K. W. J., Foxon, C. T., & Roberts, J. S. (1993). Modeling the spectral response of the quantum well solar cell. Journal of Applied Physics, 74(1), 614-621. doi:10.1063/1.355275 es_ES
dc.description.references Ekins-Daukes, N. J., Kawaguchi, K., & Zhang, J. (2002). Strain-Balanced Criteria for Multiple Quantum Well Structures and Its Signature in X-ray Rocking Curves†. Crystal Growth & Design, 2(4), 287-292. doi:10.1021/cg025502y es_ES
dc.description.references Fujii, H., Wang, Y., Watanabe, K., Sugiyama, M., & Nakano, Y. (2012). Suppressed lattice relaxation during InGaAs/GaAsP MQW growth with InGaAs and GaAs ultra-thin interlayers. Journal of Crystal Growth, 352(1), 239-244. doi:10.1016/j.jcrysgro.2011.11.036 es_ES
dc.description.references Nelson, J. (2003). The Physics of Solar Cells. doi:10.1142/p276 es_ES
dc.description.references BUSHNELL, D., EKINSDAUKES, N., BARNHAM, K., CONNOLLY, J., ROBERTS, J., HILL, G., … MAZZER, M. (2003). Short-circuit current enhancement in Bragg stack multi-quantum-well solar cells for multi-junction space cell applications. Solar Energy Materials and Solar Cells, 75(1-2), 299-305. doi:10.1016/s0927-0248(02)00172-1 es_ES
dc.description.references Johnson, D. C., Ballard, I. M., Barnham, K. W. J., Connolly, J. P., Mazzer, M., Bessière, A., … Roberts, J. S. (2007). Observation of photon recycling in strain-balanced quantum well solar cells. Applied Physics Letters, 90(21), 213505. doi:10.1063/1.2742334 es_ES
dc.description.references Adams, A. R. (1986). Band-structure engineering for low-threshold high-efficiency semiconductor lasers. Electronics Letters, 22(5), 249. doi:10.1049/el:19860171 es_ES
dc.description.references Adams, J. G. J., Browne, B. C., Ballard, I. M., Connolly, J. P., Chan, N. L. A., Ioannides, A., … Ekins-Daukes, N. J. (2011). Recent results for single-junction and tandem quantum well solar cells. Progress in Photovoltaics: Research and Applications, 19(7), 865-877. doi:10.1002/pip.1069 es_ES
dc.description.references Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2012). Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 20(5), 606-614. doi:10.1002/pip.2267 es_ES
dc.description.references Lee, K.-H., Barnham, K. W. J., Connolly, J. P., Browne, B. C., Airey, R. J., Roberts, J. S., … Ekins-Daukes, N. J. (2012). Demonstration of Photon Coupling in Dual Multiple-Quantum-Well Solar Cells. IEEE Journal of Photovoltaics, 2(1), 68-74. doi:10.1109/jphotov.2011.2177444 es_ES
dc.description.references Baur, C., Hermle, M., Dimroth, F., & Bett, A. W. (2007). Effects of optical coupling in III-V multilayer systems. Applied Physics Letters, 90(19), 192109. doi:10.1063/1.2737927 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem