Mostrar el registro sencillo del ítem
dc.contributor.author | Anza Hormigo, Sergio | es_ES |
dc.contributor.author | Mattes, Michael | es_ES |
dc.contributor.author | Vicente Quiles, Carlos Pascual | es_ES |
dc.contributor.author | Gil Raga, Jordi | es_ES |
dc.contributor.author | Raboso García-Baquero, David | es_ES |
dc.contributor.author | Boria Esbert, Vicente Enrique | es_ES |
dc.contributor.author | Gimeno Martinez, Benito | es_ES |
dc.date.accessioned | 2015-12-23T12:50:36Z | |
dc.date.available | 2015-12-23T12:50:36Z | |
dc.date.issued | 2011-03 | |
dc.identifier.issn | 1070-664X | |
dc.identifier.uri | http://hdl.handle.net/10251/59172 | |
dc.description.abstract | This work presents a new theory of multipactor under multicarrier signals for parallel-plate geometries, assuming a homogeneous electric field and one-dimensional electron motion. It is the generalization of the nonstationary multipactor theory for single-carrier signals [S. Anza,Phys. Plasmas 17, 062110 (2010)]. It is valid for multicarrier signals with an arbitrary number of carriers with different amplitude, arbitrary frequency, and phase conditions and for any material coating. This new theory is able to model the real dynamics of the electrons during the multipactor discharge for both single and double surface interactions. Among other parameters of the discharge, it calculates the evolution in time of the charge growth, electron absorption, and creation rates as well as the instantaneous secondary emission yield and order. An extensive set of numerical tests with particle-in-cell software has been carried out in order to validate the theory under many different conditions. This theoretical development constitutes the first multipactor theory which completely characterizes the multipactor discharge for arbitrary multicarrier signals, setting the first step for further investigations in the field. © 2011 American Institute of Physics. | es_ES |
dc.description.sponsorship | The authors would like to thank ESA/ESTEC for having funded this research activity through the contract "RF Breakdown in Multicarrier Systems" (Grant No. 1-9918/06/NL/GLC) and to the Ministerio de Ciencia e Innovacion (Spain) for the support through the "Programa Torres Quevedo" (Grant No. PTQ06-2-0693). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Physics of Plasmas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Arbitrary frequencies | es_ES |
dc.subject | Arbitrary number | es_ES |
dc.subject | Electron motion | es_ES |
dc.subject | Homogeneous electric field | es_ES |
dc.subject | Material coatings | es_ES |
dc.subject | Multicarrier signal | es_ES |
dc.subject | Multipactor discharge | es_ES |
dc.subject | Multipactors | es_ES |
dc.subject | New theory | es_ES |
dc.subject | Nonstationary | es_ES |
dc.subject | Numerical tests | es_ES |
dc.subject | Parallel plate geometry | es_ES |
dc.subject | Particle-in-cell | es_ES |
dc.subject | Phase conditions | es_ES |
dc.subject | Secondary emission yield | es_ES |
dc.subject | Single carrier | es_ES |
dc.subject | Surface interactions | es_ES |
dc.subject | Theoretical development | es_ES |
dc.subject | Electric fields | es_ES |
dc.subject | Multicarrier modulation | es_ES |
dc.subject | Electric discharges | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Multipactor theory for multicarrier signals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.3561821 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ESA//19918%2F06%2FNL%2FGLC/EU/RF Breakdown in Multicarrier Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PTQ06-2-0693/ES/PTQ06-2-0693/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Anza Hormigo, S.; Mattes, M.; Vicente Quiles, CP.; Gil Raga, J.; Raboso García-Baquero, D.; Boria Esbert, VE.; Gimeno Martinez, B. (2011). Multipactor theory for multicarrier signals. Physics of Plasmas. 18(3). https://doi.org/10.1063/1.3561821 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.3561821 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 208424 | es_ES |
dc.identifier.eissn | 1089-7550 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Space Agency | es_ES |
dc.description.references | Anza, S., Vicente, C., Gil, J., Boria, V. E., Gimeno, B., & Raboso, D. (2010). Nonstationary statistical theory for multipactor. Physics of Plasmas, 17(6), 062110. doi:10.1063/1.3443128 | es_ES |
dc.description.references | Farnsworth, P. T. (1934). Television by electron image scanning. Journal of the Franklin Institute, 218(4), 411-444. doi:10.1016/s0016-0032(34)90415-4 | es_ES |
dc.description.references | Starting potentials of high-frequency gas discharges at low pressure. (1948). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 192(1030), 446-463. doi:10.1098/rspa.1948.0018 | es_ES |
dc.description.references | Vaughan, J. R. M. (1988). Multipactor. IEEE Transactions on Electron Devices, 35(7), 1172-1180. doi:10.1109/16.3387 | es_ES |
dc.description.references | Semenov, V., Kryazhev, A., Anderson, D., & Lisak, M. (2001). Multipactor suppression in amplitude modulated radio frequency fields. Physics of Plasmas, 8(11), 5034-5039. doi:10.1063/1.1410980 | es_ES |
dc.description.references | Rozario, N., Lenzing, H. F., Reardon, K. F., Zarro, M. S., & Baran, C. G. (1994). Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown. IEEE Transactions on Microwave Theory and Techniques, 42(4), 558-564. doi:10.1109/22.285060 | es_ES |
dc.description.references | Hatch, A. J., & Williams, H. B. (1954). The Secondary Electron Resonance Mechanism of Low‐Pressure High‐Frequency Gas Breakdown. Journal of Applied Physics, 25(4), 417-423. doi:10.1063/1.1721656 | es_ES |
dc.description.references | Hatch, A. J., & Williams, H. B. (1958). Multipacting Modes of High-Frequency Gaseous Breakdown. Physical Review, 112(3), 681-685. doi:10.1103/physrev.112.681 | es_ES |
dc.description.references | Riyopoulos, S., Chernin, D., & Dialetis, D. (1995). Theory of electron multipactor in crossed fields. Physics of Plasmas, 2(8), 3194-3213. doi:10.1063/1.871151 | es_ES |
dc.description.references | Kishek, R. A., Lau, Y. Y., Ang, L. K., Valfells, A., & Gilgenbach, R. M. (1998). Multipactor discharge on metals and dielectrics: Historical review and recent theories. Physics of Plasmas, 5(5), 2120-2126. doi:10.1063/1.872883 | es_ES |
dc.description.references | Gilardini, A. L. (1992). New breakdown modes of the multipacting discharge. Journal of Applied Physics, 71(9), 4629-4631. doi:10.1063/1.350767 | es_ES |
dc.description.references | Kryazhev, A., Buyanova, M., Semenov, V., Anderson, D., Lisak, M., Puech, J., … Sombrin, J. (2002). Hybrid resonant modes of two-sided multipactor and transition to the polyphase regime. Physics of Plasmas, 9(11), 4736-4743. doi:10.1063/1.1514969 | es_ES |
dc.description.references | Semenov, V. E., Rakova, E., Udiljak, R., Anderson, D., Lisak, M., & Puech, J. (2008). Conformal mapping analysis of multipactor breakdown in waveguide irises. Physics of Plasmas, 15(3), 033501. doi:10.1063/1.2884712 | es_ES |
dc.description.references | Semenov, V. E., Rakova, E. I., Anderson, D., Lisak, M., & Puech, J. (2007). Multipactor in rectangular waveguides. Physics of Plasmas, 14(3), 033501. doi:10.1063/1.2480678 | es_ES |
dc.description.references | Woo, R. (1968). Multipacting Discharges between Coaxial Electrodes. Journal of Applied Physics, 39(3), 1528-1533. doi:10.1063/1.1656390 | es_ES |
dc.description.references | Vdovicheva, N. K., Sazontov, A. G., & Semenov, V. E. (2004). Statistical Theory of Two-Sided Multipactor. Radiophysics and Quantum Electronics, 47(8), 580-596. doi:10.1023/b:raqe.0000049556.18329.e9 | es_ES |
dc.description.references | Kossyi, I. A., Lukyanchikov, G. S., Semenov, V. E., Rakova, E. I., Anderson, D., Lisak, M., & Puech, J. (2008). Polyphase (non-resonant) multipactor in rectangular waveguides. Journal of Physics D: Applied Physics, 41(6), 065203. doi:10.1088/0022-3727/41/6/065203 | es_ES |
dc.description.references | Anza, S., Vicente, C., Gimeno, B., Boria, V. E., & Armendáriz, J. (2007). Long-term multipactor discharge in multicarrier systems. Physics of Plasmas, 14(8), 082112. doi:10.1063/1.2768019 | es_ES |
dc.description.references | Verboncoeur, J. P. (2005). Particle simulation of plasmas: review and advances. Plasma Physics and Controlled Fusion, 47(5A), A231-A260. doi:10.1088/0741-3335/47/5a/017 | es_ES |
dc.description.references | S. Anza, C. Vicente, D. Raboso, J. Gil, B. Gimeno, and V. E. Boria, IEEE International Microwave Symposium (Atlanta, Georgia, 2008), pp. 1095–1098. | es_ES |
dc.description.references | Furman, M., & Pivi, M. (2002). Probabilistic model for the simulation of secondary electron emission. Physical Review Special Topics - Accelerators and Beams, 5(12). doi:10.1103/physrevstab.5.124404 | es_ES |
dc.description.references | Chung, M. S., & Everhart, T. E. (1974). Simple calculation of energy distribution of low‐energy secondary electrons emitted from metals under electron bombardment. Journal of Applied Physics, 45(2), 707-709. doi:10.1063/1.1663306 | es_ES |
dc.description.references | Dexter, A., & Seviour, R. (2005). Rapid generation of multipactor charts by numerical solution of the phase equation. Journal of Physics D: Applied Physics, 38(9), 1383-1389. doi:10.1088/0022-3727/38/9/009 | es_ES |
dc.description.references | Vaughan, J. R. M. (1989). A new formula for secondary emission yield. IEEE Transactions on Electron Devices, 36(9), 1963-1967. doi:10.1109/16.34278 | es_ES |
dc.description.references | Vicente, C., Mattes, M., Wolk, D., Mottet, B., Hartnagel, H. L., Mosig, J. R., & Raboso, D. (s. f.). Multipactor breakdown prediction in rectangular waveguide based components. IEEE MTT-S International Microwave Symposium Digest, 2005. doi:10.1109/mwsym.2005.1516852 | es_ES |
dc.description.references | Polyanin, A. (1998). Handbook of Integral Equations. doi:10.1201/9781420050066 | es_ES |
dc.description.references | C. Vicente, M. Mattes, D. Wolk, H. L. Hartnagel, J. R. Mosig, and D. Raboso, Proceedings of the Fifth International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware (ESTEC, Noordwijk, 2005), pp. 11–17. | es_ES |