- -

Multipactor theory for multicarrier signals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipactor theory for multicarrier signals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anza Hormigo, Sergio es_ES
dc.contributor.author Mattes, Michael es_ES
dc.contributor.author Vicente Quiles, Carlos Pascual es_ES
dc.contributor.author Gil Raga, Jordi es_ES
dc.contributor.author Raboso García-Baquero, David es_ES
dc.contributor.author Boria Esbert, Vicente Enrique es_ES
dc.contributor.author Gimeno Martinez, Benito es_ES
dc.date.accessioned 2015-12-23T12:50:36Z
dc.date.available 2015-12-23T12:50:36Z
dc.date.issued 2011-03
dc.identifier.issn 1070-664X
dc.identifier.uri http://hdl.handle.net/10251/59172
dc.description.abstract This work presents a new theory of multipactor under multicarrier signals for parallel-plate geometries, assuming a homogeneous electric field and one-dimensional electron motion. It is the generalization of the nonstationary multipactor theory for single-carrier signals [S. Anza,Phys. Plasmas 17, 062110 (2010)]. It is valid for multicarrier signals with an arbitrary number of carriers with different amplitude, arbitrary frequency, and phase conditions and for any material coating. This new theory is able to model the real dynamics of the electrons during the multipactor discharge for both single and double surface interactions. Among other parameters of the discharge, it calculates the evolution in time of the charge growth, electron absorption, and creation rates as well as the instantaneous secondary emission yield and order. An extensive set of numerical tests with particle-in-cell software has been carried out in order to validate the theory under many different conditions. This theoretical development constitutes the first multipactor theory which completely characterizes the multipactor discharge for arbitrary multicarrier signals, setting the first step for further investigations in the field. © 2011 American Institute of Physics. es_ES
dc.description.sponsorship The authors would like to thank ESA/ESTEC for having funded this research activity through the contract "RF Breakdown in Multicarrier Systems" (Grant No. 1-9918/06/NL/GLC) and to the Ministerio de Ciencia e Innovacion (Spain) for the support through the "Programa Torres Quevedo" (Grant No. PTQ06-2-0693). en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Physics of Plasmas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arbitrary frequencies es_ES
dc.subject Arbitrary number es_ES
dc.subject Electron motion es_ES
dc.subject Homogeneous electric field es_ES
dc.subject Material coatings es_ES
dc.subject Multicarrier signal es_ES
dc.subject Multipactor discharge es_ES
dc.subject Multipactors es_ES
dc.subject New theory es_ES
dc.subject Nonstationary es_ES
dc.subject Numerical tests es_ES
dc.subject Parallel plate geometry es_ES
dc.subject Particle-in-cell es_ES
dc.subject Phase conditions es_ES
dc.subject Secondary emission yield es_ES
dc.subject Single carrier es_ES
dc.subject Surface interactions es_ES
dc.subject Theoretical development es_ES
dc.subject Electric fields es_ES
dc.subject Multicarrier modulation es_ES
dc.subject Electric discharges es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multipactor theory for multicarrier signals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3561821
dc.relation.projectID info:eu-repo/grantAgreement/ESA//19918%2F06%2FNL%2FGLC/EU/RF Breakdown in Multicarrier Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PTQ06-2-0693/ES/PTQ06-2-0693/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Anza Hormigo, S.; Mattes, M.; Vicente Quiles, CP.; Gil Raga, J.; Raboso García-Baquero, D.; Boria Esbert, VE.; Gimeno Martinez, B. (2011). Multipactor theory for multicarrier signals. Physics of Plasmas. 18(3). https://doi.org/10.1063/1.3561821 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3561821 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 208424 es_ES
dc.identifier.eissn 1089-7550
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Space Agency es_ES
dc.description.references Anza, S., Vicente, C., Gil, J., Boria, V. E., Gimeno, B., & Raboso, D. (2010). Nonstationary statistical theory for multipactor. Physics of Plasmas, 17(6), 062110. doi:10.1063/1.3443128 es_ES
dc.description.references Farnsworth, P. T. (1934). Television by electron image scanning. Journal of the Franklin Institute, 218(4), 411-444. doi:10.1016/s0016-0032(34)90415-4 es_ES
dc.description.references Starting potentials of high-frequency gas discharges at low pressure. (1948). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 192(1030), 446-463. doi:10.1098/rspa.1948.0018 es_ES
dc.description.references Vaughan, J. R. M. (1988). Multipactor. IEEE Transactions on Electron Devices, 35(7), 1172-1180. doi:10.1109/16.3387 es_ES
dc.description.references Semenov, V., Kryazhev, A., Anderson, D., & Lisak, M. (2001). Multipactor suppression in amplitude modulated radio frequency fields. Physics of Plasmas, 8(11), 5034-5039. doi:10.1063/1.1410980 es_ES
dc.description.references Rozario, N., Lenzing, H. F., Reardon, K. F., Zarro, M. S., & Baran, C. G. (1994). Investigation of Telstar 4 spacecraft Ku-band and C-band antenna components for multipactor breakdown. IEEE Transactions on Microwave Theory and Techniques, 42(4), 558-564. doi:10.1109/22.285060 es_ES
dc.description.references Hatch, A. J., & Williams, H. B. (1954). The Secondary Electron Resonance Mechanism of Low‐Pressure High‐Frequency Gas Breakdown. Journal of Applied Physics, 25(4), 417-423. doi:10.1063/1.1721656 es_ES
dc.description.references Hatch, A. J., & Williams, H. B. (1958). Multipacting Modes of High-Frequency Gaseous Breakdown. Physical Review, 112(3), 681-685. doi:10.1103/physrev.112.681 es_ES
dc.description.references Riyopoulos, S., Chernin, D., & Dialetis, D. (1995). Theory of electron multipactor in crossed fields. Physics of Plasmas, 2(8), 3194-3213. doi:10.1063/1.871151 es_ES
dc.description.references Kishek, R. A., Lau, Y. Y., Ang, L. K., Valfells, A., & Gilgenbach, R. M. (1998). Multipactor discharge on metals and dielectrics: Historical review and recent theories. Physics of Plasmas, 5(5), 2120-2126. doi:10.1063/1.872883 es_ES
dc.description.references Gilardini, A. L. (1992). New breakdown modes of the multipacting discharge. Journal of Applied Physics, 71(9), 4629-4631. doi:10.1063/1.350767 es_ES
dc.description.references Kryazhev, A., Buyanova, M., Semenov, V., Anderson, D., Lisak, M., Puech, J., … Sombrin, J. (2002). Hybrid resonant modes of two-sided multipactor and transition to the polyphase regime. Physics of Plasmas, 9(11), 4736-4743. doi:10.1063/1.1514969 es_ES
dc.description.references Semenov, V. E., Rakova, E., Udiljak, R., Anderson, D., Lisak, M., & Puech, J. (2008). Conformal mapping analysis of multipactor breakdown in waveguide irises. Physics of Plasmas, 15(3), 033501. doi:10.1063/1.2884712 es_ES
dc.description.references Semenov, V. E., Rakova, E. I., Anderson, D., Lisak, M., & Puech, J. (2007). Multipactor in rectangular waveguides. Physics of Plasmas, 14(3), 033501. doi:10.1063/1.2480678 es_ES
dc.description.references Woo, R. (1968). Multipacting Discharges between Coaxial Electrodes. Journal of Applied Physics, 39(3), 1528-1533. doi:10.1063/1.1656390 es_ES
dc.description.references Vdovicheva, N. K., Sazontov, A. G., & Semenov, V. E. (2004). Statistical Theory of Two-Sided Multipactor. Radiophysics and Quantum Electronics, 47(8), 580-596. doi:10.1023/b:raqe.0000049556.18329.e9 es_ES
dc.description.references Kossyi, I. A., Lukyanchikov, G. S., Semenov, V. E., Rakova, E. I., Anderson, D., Lisak, M., & Puech, J. (2008). Polyphase (non-resonant) multipactor in rectangular waveguides. Journal of Physics D: Applied Physics, 41(6), 065203. doi:10.1088/0022-3727/41/6/065203 es_ES
dc.description.references Anza, S., Vicente, C., Gimeno, B., Boria, V. E., & Armendáriz, J. (2007). Long-term multipactor discharge in multicarrier systems. Physics of Plasmas, 14(8), 082112. doi:10.1063/1.2768019 es_ES
dc.description.references Verboncoeur, J. P. (2005). Particle simulation of plasmas: review and advances. Plasma Physics and Controlled Fusion, 47(5A), A231-A260. doi:10.1088/0741-3335/47/5a/017 es_ES
dc.description.references S. Anza, C. Vicente, D. Raboso, J. Gil, B. Gimeno, and V. E. Boria, IEEE International Microwave Symposium (Atlanta, Georgia, 2008), pp. 1095–1098. es_ES
dc.description.references Furman, M., & Pivi, M. (2002). Probabilistic model for the simulation of secondary electron emission. Physical Review Special Topics - Accelerators and Beams, 5(12). doi:10.1103/physrevstab.5.124404 es_ES
dc.description.references Chung, M. S., & Everhart, T. E. (1974). Simple calculation of energy distribution of low‐energy secondary electrons emitted from metals under electron bombardment. Journal of Applied Physics, 45(2), 707-709. doi:10.1063/1.1663306 es_ES
dc.description.references Dexter, A., & Seviour, R. (2005). Rapid generation of multipactor charts by numerical solution of the phase equation. Journal of Physics D: Applied Physics, 38(9), 1383-1389. doi:10.1088/0022-3727/38/9/009 es_ES
dc.description.references Vaughan, J. R. M. (1989). A new formula for secondary emission yield. IEEE Transactions on Electron Devices, 36(9), 1963-1967. doi:10.1109/16.34278 es_ES
dc.description.references Vicente, C., Mattes, M., Wolk, D., Mottet, B., Hartnagel, H. L., Mosig, J. R., & Raboso, D. (s. f.). Multipactor breakdown prediction in rectangular waveguide based components. IEEE MTT-S International Microwave Symposium Digest, 2005. doi:10.1109/mwsym.2005.1516852 es_ES
dc.description.references Polyanin, A. (1998). Handbook of Integral Equations. doi:10.1201/9781420050066 es_ES
dc.description.references C. Vicente, M. Mattes, D. Wolk, H. L. Hartnagel, J. R. Mosig, and D. Raboso, Proceedings of the Fifth International Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware (ESTEC, Noordwijk, 2005), pp. 11–17. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem