- -

Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez Pastor, Antonio María es_ES
dc.contributor.author Gimeno Martinez, Benito es_ES
dc.contributor.author Boria Esbert, Vicente Enrique es_ES
dc.contributor.author Anza Hormigo, Sergio es_ES
dc.contributor.author Vicente Quiles, Carlos Pascual es_ES
dc.contributor.author Gil Raga, Jordi es_ES
dc.date.accessioned 2015-12-23T12:51:04Z
dc.date.available 2015-12-23T12:51:04Z
dc.date.issued 2014-08
dc.identifier.issn 1070-664X
dc.identifier.uri http://hdl.handle.net/10251/59173
dc.description.abstract Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE11 circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Physics of Plasmas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multipactor effect es_ES
dc.subject Circular waveguides es_ES
dc.subject Orthogonal polarization waves es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4892250
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Pérez Pastor, AM.; Gimeno Martinez, B.; Boria Esbert, VE.; Anza Hormigo, S.; Vicente Quiles, CP.; Gil Raga, J. (2014). Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves. Physics of Plasmas. 21(8). doi:10.1063/1.4892250 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4892250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 283385 es_ES
dc.identifier.eissn 1089-7550
dc.description.references De Lara, J., Perez, F., Alfonseca, M., Galan, L., Montero, I., Roman, E., & Garcia-Baquero, D. R. (2006). Multipactor prediction for on-board spacecraft RF equipment with the MEST software tool. IEEE Transactions on Plasma Science, 34(2), 476-484. doi:10.1109/tps.2006.872450 es_ES
dc.description.references Abe, T., Kageyama, T., Akai, K., Ebihara, K., Sakai, H., & Takeuchi, Y. (2006). Multipactoring zone map of an rf input coupler and its application to high beam current storage rings. Physical Review Special Topics - Accelerators and Beams, 9(6). doi:10.1103/physrevstab.9.062002 es_ES
dc.description.references Wang, C., Hsieh, K. Y., Chang, L. H., Lin, M. C., & Chu, K. R. (2007). A Tunable Reflecting Load for Multipactor Processing of the RF Power Coupler of a Superconducting Cavity. IEEE Transactions on Applied Superconductivity, 17(2), 1285-1290. doi:10.1109/tasc.2007.899823 es_ES
dc.description.references M. A. Furman , “ The electron-cloud effect in the arcs of the LHC,” Technical Report No.180, CERN-LHC 1998. es_ES
dc.description.references F. Zimmermann , “ A simulation study of electron-cloud instability and beam-induced multipacting in the LHC,” Technical Report No. 95, CERN-LHC 1997. es_ES
dc.description.references Hatch, A. J., & Williams, H. B. (1954). The Secondary Electron Resonance Mechanism of Low‐Pressure High‐Frequency Gas Breakdown. Journal of Applied Physics, 25(4), 417-423. doi:10.1063/1.1721656 es_ES
dc.description.references J. Sombrin , “ Effect multipactor,” Technical Report No. 83/DRT/TIT/119/T, CNES Toulouse 1983. es_ES
dc.description.references Coves, A., Torregrosa-Penalva, G., Vicente, C., Gimeno, B., & Boria, V. E. (2008). Multipactor Discharges in Parallel-Plate Dielectric-Loaded Waveguides Including Space-Charge Effects. IEEE Transactions on Electron Devices, 55(9), 2505-2511. doi:10.1109/ted.2008.927945 es_ES
dc.description.references Sazontov, A. G., & Nevchaev, V. E. (2010). Effects of rf magnetic field and wave reflection on multipactor discharge on a dielectric. Physics of Plasmas, 17(3), 033509. doi:10.1063/1.3356082 es_ES
dc.description.references Semenov, V. E., Rakova, E. I., Anderson, D., Lisak, M., & Puech, J. (2007). Multipactor in rectangular waveguides. Physics of Plasmas, 14(3), 033501. doi:10.1063/1.2480678 es_ES
dc.description.references Hueso, J., Raboso, D., Schmitt, D., Boria, V. E., Martinez, B., & Vicente, C. (2011). Study of the Multipactor Effect in Bandpass Wedge-Shaped Waveguide Filters. IEEE Transactions on Electron Devices, 58(9), 3205-3212. doi:10.1109/ted.2011.2159610 es_ES
dc.description.references Gonzalez, J. H., Garcia-Baquero, D. R., Ernst, C., Schmitt, D., Esbert, V. E. B., Martinez, B. G., … Quiles, C. V. (2013). Optimized Multipactor-Resistant Wedge-Shaped Waveguide Bandpass Filters. IEEE Transactions on Plasma Science, 41(8), 2135-2144. doi:10.1109/tps.2013.2253134 es_ES
dc.description.references Semenov, V. E., Rakova, E. I., Sazontov, A. G., Nefedov, I. M., Pozdnyakova, V. I., Shereshevskii, I. A., … Puech, J. (2009). Simulations of multipactor thresholds in shielded microstrip lines. Journal of Physics D: Applied Physics, 42(20), 205204. doi:10.1088/0022-3727/42/20/205204 es_ES
dc.description.references Udiljak, R., Anderson, D., Lisak, M., Puech, J., & Semenov, V. E. (2007). Multipactor in a Waveguide Iris. IEEE Transactions on Plasma Science, 35(2), 388-395. doi:10.1109/tps.2007.892737 es_ES
dc.description.references Semenov, V. E., Rakova, E., Udiljak, R., Anderson, D., Lisak, M., & Puech, J. (2008). Conformal mapping analysis of multipactor breakdown in waveguide irises. Physics of Plasmas, 15(3), 033501. doi:10.1063/1.2884712 es_ES
dc.description.references Woo, R. (1968). Multipacting Discharges between Coaxial Electrodes. Journal of Applied Physics, 39(3), 1528-1533. doi:10.1063/1.1656390 es_ES
dc.description.references Udiljak, R., Anderson, D., Lisak, M., Semenov, V. E., & Puech, J. (2007). Multipactor in a coaxial transmission line. I. Analytical study. Physics of Plasmas, 14(3), 033508. doi:10.1063/1.2710464 es_ES
dc.description.references Semenov, V. E., Zharova, N., Udiljak, R., Anderson, D., Lisak, M., & Puech, J. (2007). Multipactor in a coaxial transmission line. II. Particle-in-cell simulations. Physics of Plasmas, 14(3), 033509. doi:10.1063/1.2710466 es_ES
dc.description.references Perez, A. M., Tienda, C., Vicente, C., Anza, S., Gil, J., Gimeno, B., … Raboso, D. (2009). Prediction of Multipactor Breakdown Thresholds in Coaxial Transmission Lines for Traveling, Standing, and Mixed Waves. IEEE Transactions on Plasma Science, 37(10), 2031-2040. doi:10.1109/tps.2009.2028428 es_ES
dc.description.references Semenov, V. E., Zharova, N. A., Anderson, D., Lisak, M., & Puech, J. (2010). Simulations of multipactor in circular waveguides. Physics of Plasmas, 17(12), 123503. doi:10.1063/1.3526674 es_ES
dc.description.references E. Somersalo , P. Ylä-Oijala , and D. Proch , “ Electron multipacting in rf structures,” Technical Report No. 94-14, TESLA 1994. es_ES
dc.description.references Verlet, L. (1967). Computer «Experiments» on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98-103. doi:10.1103/physrev.159.98 es_ES
dc.description.references Spreiter, Q., & Walter, M. (1999). Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields. Journal of Computational Physics, 152(1), 102-119. doi:10.1006/jcph.1999.6237 es_ES
dc.description.references Vaughan, J. R. M. (1989). A new formula for secondary emission yield. IEEE Transactions on Electron Devices, 36(9), 1963-1967. doi:10.1109/16.34278 es_ES
dc.description.references Shih, A., & Hor, C. (1993). Secondary emission properties as a function of the electron incidence angle. IEEE Transactions on Electron Devices, 40(4), 824-829. doi:10.1109/16.202797 es_ES
dc.description.references Vicente, C., Mattes, M., Wolk, D., Mottet, B., Hartnagel, H. L., Mosig, J. R., & Raboso, D. (s. f.). Multipactor breakdown prediction in rectangular waveguide based components. IEEE MTT-S International Microwave Symposium Digest, 2005. doi:10.1109/mwsym.2005.1516852 es_ES
dc.description.references Goldstein, H., & Twersky, V. (1952). Classical Mechanics. Physics Today, 5(9), 19-20. doi:10.1063/1.3067728 es_ES
dc.description.references Gimeno, B., Cruz, J. L., Navarro, E. A., & Such, V. (1994). A polarizer rotator system for three-dimensional oblique incidence. IEEE Transactions on Antennas and Propagation, 42(7), 912-919. doi:10.1109/8.299592 es_ES
dc.description.references Born, M., Wolf, E., Bhatia, A. B., Clemmow, P. C., Gabor, D., Stokes, A. R., … Wilcock, W. L. (1999). Principles of Optics. doi:10.1017/cbo9781139644181 es_ES
dc.description.references Hatch, A. J., & Williams, H. B. (1958). Multipacting Modes of High-Frequency Gaseous Breakdown. Physical Review, 112(3), 681-685. doi:10.1103/physrev.112.681 es_ES
dc.description.references Cogollos, S., Marini, S., Boria, V. E., Soto, P., Vidal, A., Esteban, H., … Gimeno, B. (2003). Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular, and elliptical arcs using the BI-RME method. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2378-2390. doi:10.1109/tmtt.2003.819776 es_ES
dc.description.references Papziner, U., & Arndt, F. (1993). Field theoretical computer-aided design of rectangular and circular iris coupled rectangular or circular waveguide cavity filters. IEEE Transactions on Microwave Theory and Techniques, 41(3), 462-471. doi:10.1109/22.223746 es_ES
dc.description.references Hu, H., Wu, K.-L., & Cameron, R. J. (2013). Stepped Circular Waveguide Dual-Mode Filters for Broadband Contiguous Multiplexers. IEEE Transactions on Microwave Theory and Techniques, 61(1), 139-145. doi:10.1109/tmtt.2012.2227787 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem