Mostrar el registro sencillo del ítem
dc.contributor.author | Alonso-Jordá, Pedro | es_ES |
dc.contributor.author | Dolz Zaragozá, Manuel Francisco | es_ES |
dc.contributor.author | Igual, Francisco D. | es_ES |
dc.contributor.author | Mayo, Rafael | es_ES |
dc.contributor.author | Quintana Ortí, Enrique Salvador | es_ES |
dc.date.accessioned | 2015-12-30T08:53:23Z | |
dc.date.available | 2015-12-30T08:53:23Z | |
dc.date.issued | 2012-11 | |
dc.identifier.issn | 1865-2034 | |
dc.identifier.uri | http://hdl.handle.net/10251/59290 | |
dc.description.abstract | [EN] This paper analyzes the impact on power con- sumption of two DVFS-control strategies when applied to the execution of dense linear algebra operations on multi- core processors. The strategies considered here, prototyped as the Slack Reduction Algorithm (SRA) and the Race-to- Idle Algorithm (RIA), adjust the operation frequency of the cores during execution of a collection of tasks (in which many dense linear algebra algorithms can be decomposed) with a very different approach to save energy. A power- aware simulator, in charge of scheduling the execution of tasks to processor cores, is employed to evaluate the perfor- mance benefits of these power-control policies for two ref- erence algorithms for the LU factorization, a key operation for the solution of linear systems of equations. | es_ES |
dc.description.sponsorship | The authors from Univ. Jaume I were supported by project CICYT TIN2008-06570-C04 and FEDER. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Computer Science - Research and Development | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dense linear algebra | es_ES |
dc.subject | Power consumption | es_ES |
dc.subject | Multi-core processors | es_ES |
dc.subject | DVFS | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | DVFS-control techniques for dense linear algebra operations on multi-core processors | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00450-011-0188-7 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-06570-C04-01/ES/CONSTRUCCION Y OPTIMIZACION AUTOMATICAS DE BIBLIOTECAS PARALELAS DE COMPUTACION CIENTIFICA - UJI/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-06570-C04-04/ES/CONSTRUCCION Y OPTIMIZACION AUTOMATICAS DE BIBLIOTECAS PARALELAS DE COMPUTACION CIENTIFICA - UA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2008-06570-C04-02/ES/CONSTRUCCION Y OPTIMIZACION AUTOMATICAS DE BIBLIOTECAS PARALELAS DE COMPUTACION CIENTIFICA - UM/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Alonso-Jordá, P.; Dolz Zaragozá, MF.; Igual, FD.; Mayo, R.; Quintana Ortí, ES. (2012). DVFS-control techniques for dense linear algebra operations on multi-core processors. Computer Science - Research and Development. 27(4):289-298. https://doi.org/10.1007/s00450-011-0188-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00450-011-0188-7 | es_ES |
dc.description.upvformatpinicio | 289 | es_ES |
dc.description.upvformatpfin | 298 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 232835 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Albers S (2010) Energy-efficient algorithms. Commun ACM 53:86–96 | es_ES |
dc.description.references | Dongarra J et al. (2011) The international ExaScale software project roadmap. Int J High Perform Comput Appl, 25(1):3–60 | es_ES |
dc.description.references | Duranton M et al. (2010) The HiPEAC vision. Available from http://www.hipeac.net/roadmap | es_ES |
dc.description.references | Feng W, Feng X, Ce R (2008) Green supercomputing comes of age. IT Prof 10(1):17–23 | es_ES |
dc.description.references | Gruber R, Keller V (2010) One joule per GFlop for BLAS2 now! In: Simos TE, Psihoyios G, Tsitouras C (eds) AIP conf proceedings, vol 1281. American Institute of Physics, College Park, pp 1321–1324 | es_ES |
dc.description.references | Ludwig T (2010) Editorial for the first international conference on energy-aware high performance computing. Comput Sci Res Dev 25(3):123–124 | es_ES |
dc.description.references | Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore | es_ES |
dc.description.references | Van Zee FG (2009) libflame: the complete reference. www.lulu.com | es_ES |
dc.description.references | Anderson E, Bai Z, Bischof C, Blackford LS, Demmel J, Dongarra JJ, Croz Du J, Hammarling S, Greenbaum A, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia | es_ES |
dc.description.references | Hsu C, Feng W (2005) A feasibility analysis of power awareness in commodity-based high-performance clusters. In: Cluster 2005 | es_ES |
dc.description.references | Quintana-Ortí ES, van de Geijn RA (2008) Updating an LU factorization with pivoting. ACM Trans Math Softw 35(2):11:1–11:16 | es_ES |
dc.description.references | Quintana-Ortí G, Quintana-Ortí ES, van de Geijn RA, Van Zee FG, Chan E (2009) Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans Math Softw 36(3):14:1–14:26 | es_ES |
dc.description.references | Freeh VW, Lowenthal DK, Pan F, Kappiah N, Springer R, Rountree BL, Femal ME (2007) Analyzing the energy-time trade-off in high-performance computing applications. IEEE Trans Parallel Distrib Syst 18:835–848 | es_ES |
dc.description.references | King D, Ahmad I, Sheikh HF (2010) Stretch and compress based re-scheduling techniques for minimizing the execution times of DAGs on multi-core processors under energy constraints. In: International conference on green computing. IEEE Press, New York, pp 49–60 | es_ES |
dc.description.references | Palli K (2005) Scheduling dags for minimum finish time and power consumption on heterogeneous processors. Master’s thesis, Albers University, Albers, AL | es_ES |
dc.description.references | Shaffer LR, Ritter JB, Meyer WL (1965) The critical-path method. McGraw-Hill, New York | es_ES |
dc.description.references | Alonso P, Dolz MF, Mayo R, Quintana-Ortí ES (2011) Improving power efficiency of dense linear algorithms on multi-core processors via slack control. Proceedings of the 2011 international conference on high performance computing & simulation (HPCS 2011). IEE Catzlog Number. CFP1178H-CDR, pp. 463–470 | es_ES |
dc.description.references | Alonso P, Dolz MF, Mayo R, Quintana-Ortí ES (2011) Energy-aware scheduling of dense linear algebra operations on multi-core processors. Technical report 2011-04-01, Depto. de Ingeniería y Ciencia de los Computadores, Universitat Jaume I, April 2011 | es_ES |
dc.description.references | Li R, Huang HC (2007) List scheduling for jobs with arbitrary release times and similar lengths. J Sched 10(6):365–373 | es_ES |
dc.description.references | Mtibaa A, Ouni B, Abid M (2007) An efficient list scheduling algorithm for time placement problem. Comput Electr Eng 33(4):285–298 | es_ES |