- -

Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author DO CARMO BORATTO, MURILO es_ES
dc.contributor.author Alonso-Jordá, Pedro es_ES
dc.contributor.author Giménez Cánovas, Domingo es_ES
dc.contributor.author Barreto, Marcos es_ES
dc.date.accessioned 2015-12-30T10:47:18Z
dc.date.available 2015-12-30T10:47:18Z
dc.date.issued 2014-11
dc.identifier.issn 0920-8542
dc.identifier.uri http://hdl.handle.net/10251/59312
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1191-0 es_ES
dc.description.abstract Auto-tuning techniques have been used in the design of routines in recent years. The goal is to develop routines which automatically adapt to the conditions of the computational system in such a way that efficient executions are obtained indepen- dently of the end-user experience. This paper aims to explore programming routines that can be automatically adapted to the computational system conditions, making possible to use auto-tuning to represent landform attributes on multicores and multi- GPU systems using high- performance computing techniques for efficient solution of two-dimensional polynomial regression models that allow large problem instances to be addressed. es_ES
dc.description.sponsorship This work has been partially supported by European Union ERDF and Spanish Government through TEC2012-38142-C04 project. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Auto-tuning es_ES
dc.subject Landform representation es_ES
dc.subject Parallel computing es_ES
dc.subject Performance estimation es_ES
dc.subject Multicore es_ES
dc.subject Multi-GPU es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-014-1191-0
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Do Carmo Boratto, M.; Alonso-Jordá, P.; Giménez Cánovas, D.; Barreto, M. (2014). Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems. Journal of Supercomputing. 70(2):733-745. https://doi.org/10.1007/s11227-014-1191-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11227-014-1191-0 es_ES
dc.description.upvformatpinicio 733 es_ES
dc.description.upvformatpfin 745 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 265665 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alberti P, Alonso P, Vidal A, Cuenca J, Giménez D (2004) Designing polylibraries to speed up parallel computations. Int J High Perform Comput Appl 1(1/2/3):75–84 es_ES
dc.description.references Frigo M, Johnson S (1998) FFTW: an adaptive software architecture for the FFT. Proc IEEE Int Conf Acoust Speech Signal Process 3:1381–1384 es_ES
dc.description.references Garland M (2010) Parallel computing with CUDA. In: IPDPS, pp 10–26 es_ES
dc.description.references Jerez S, Montávez JP, Giménez D (2009) Optimizing the execution of a parallel meteorology simulation code. In: IPDPS. IEEE Computer Society, Los Alamitos, CA, USA es_ES
dc.description.references Nogueira L, Abrantes RP, Leal B (2008) A methodology of distributed processing using a mathematical model for landform attributes representation. In: Proceeding of the IADIS International Conference on applied computing, pp 17–21 es_ES
dc.description.references Nogueira L, Abrantes RP, Leal B, Goulart C (2008) A model of landform attributes representation for application in distributed systems. In: Proceeding of the IADIS International Conference on applied computing es_ES
dc.description.references Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool. Springer, London es_ES
dc.description.references Rufino I, Galvao C, Rego J, Albuquerque J (2009) Water resources and urban planning: the case of a coastal area in Brazil. J Urban Environ Eng 3:32–42 es_ES
dc.description.references Song F, Tomov S, Dongarra J (2011) Efficient support for matrix computations on heterogeneous multicore and multi-GPU architectures. Tech Rep 250, LAPACK working note es_ES
dc.description.references Whaley C, Petitet A, Dongarra JJ (2000) Automated empirical optimization of software and the ATLAS project. Parallel Comput 27:21–31 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem