Mostrar el registro sencillo del ítem
dc.contributor.author | DO CARMO BORATTO, MURILO | es_ES |
dc.contributor.author | Alonso-Jordá, Pedro | es_ES |
dc.contributor.author | Giménez Cánovas, Domingo | es_ES |
dc.contributor.author | Barreto, Marcos | es_ES |
dc.date.accessioned | 2015-12-30T10:47:18Z | |
dc.date.available | 2015-12-30T10:47:18Z | |
dc.date.issued | 2014-11 | |
dc.identifier.issn | 0920-8542 | |
dc.identifier.uri | http://hdl.handle.net/10251/59312 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1191-0 | es_ES |
dc.description.abstract | Auto-tuning techniques have been used in the design of routines in recent years. The goal is to develop routines which automatically adapt to the conditions of the computational system in such a way that efficient executions are obtained indepen- dently of the end-user experience. This paper aims to explore programming routines that can be automatically adapted to the computational system conditions, making possible to use auto-tuning to represent landform attributes on multicores and multi- GPU systems using high- performance computing techniques for efficient solution of two-dimensional polynomial regression models that allow large problem instances to be addressed. | es_ES |
dc.description.sponsorship | This work has been partially supported by European Union ERDF and Spanish Government through TEC2012-38142-C04 project. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Auto-tuning | es_ES |
dc.subject | Landform representation | es_ES |
dc.subject | Parallel computing | es_ES |
dc.subject | Performance estimation | es_ES |
dc.subject | Multicore | es_ES |
dc.subject | Multi-GPU | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-014-1191-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Do Carmo Boratto, M.; Alonso-Jordá, P.; Giménez Cánovas, D.; Barreto, M. (2014). Automatic routine tuning to represent landform attributes on multicore and multi-GPU systems. Journal of Supercomputing. 70(2):733-745. https://doi.org/10.1007/s11227-014-1191-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11227-014-1191-0 | es_ES |
dc.description.upvformatpinicio | 733 | es_ES |
dc.description.upvformatpfin | 745 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 265665 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Alberti P, Alonso P, Vidal A, Cuenca J, Giménez D (2004) Designing polylibraries to speed up parallel computations. Int J High Perform Comput Appl 1(1/2/3):75–84 | es_ES |
dc.description.references | Frigo M, Johnson S (1998) FFTW: an adaptive software architecture for the FFT. Proc IEEE Int Conf Acoust Speech Signal Process 3:1381–1384 | es_ES |
dc.description.references | Garland M (2010) Parallel computing with CUDA. In: IPDPS, pp 10–26 | es_ES |
dc.description.references | Jerez S, Montávez JP, Giménez D (2009) Optimizing the execution of a parallel meteorology simulation code. In: IPDPS. IEEE Computer Society, Los Alamitos, CA, USA | es_ES |
dc.description.references | Nogueira L, Abrantes RP, Leal B (2008) A methodology of distributed processing using a mathematical model for landform attributes representation. In: Proceeding of the IADIS International Conference on applied computing, pp 17–21 | es_ES |
dc.description.references | Nogueira L, Abrantes RP, Leal B, Goulart C (2008) A model of landform attributes representation for application in distributed systems. In: Proceeding of the IADIS International Conference on applied computing | es_ES |
dc.description.references | Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool. Springer, London | es_ES |
dc.description.references | Rufino I, Galvao C, Rego J, Albuquerque J (2009) Water resources and urban planning: the case of a coastal area in Brazil. J Urban Environ Eng 3:32–42 | es_ES |
dc.description.references | Song F, Tomov S, Dongarra J (2011) Efficient support for matrix computations on heterogeneous multicore and multi-GPU architectures. Tech Rep 250, LAPACK working note | es_ES |
dc.description.references | Whaley C, Petitet A, Dongarra JJ (2000) Automated empirical optimization of software and the ATLAS project. Parallel Comput 27:21–31 | es_ES |