Mostrar el registro sencillo del ítem
dc.contributor.author | Caffrey, Brian E. | es_ES |
dc.contributor.author | Williams, Tom A. | es_ES |
dc.contributor.author | Jiang, Xiaowei | es_ES |
dc.contributor.author | Toft, Christina | es_ES |
dc.contributor.author | Hokamp, Karsten | es_ES |
dc.contributor.author | Fares Riaño, Mario Ali | es_ES |
dc.date.accessioned | 2016-01-13T10:47:20Z | |
dc.date.available | 2016-01-13T10:47:20Z | |
dc.date.issued | 2012-04 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/59792 | |
dc.description.abstract | Functional divergence is the process by which new genes and functions originate through the modification of existing ones. Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria. | es_ES |
dc.description.sponsorship | This study was supported by a grant from the Spanish Ministerio de Ciencia e Inovacion (BFU2009-12022) and a grant of the Research Frontiers Program (10/RFP/GEN2685) from Science Foundation Ireland. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Detecting Positive Selection | es_ES |
dc.subject | Amino-acid sites | es_ES |
dc.subject | Bartonella-Bacilliformis | es_ES |
dc.subject | Escherichia coli | es_ES |
dc.subject | Genome sequence | es_ES |
dc.subject | Molecular adaptation | es_ES |
dc.subject | Statistical methods | es_ES |
dc.subject | Maximum likelihood | es_ES |
dc.subject | Gene duplication | es_ES |
dc.subject | Cog database | es_ES |
dc.title | Proteome-Wide Analysis of Functional Divergence in Bacteria: Exploring a Host of Ecological Adaptations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0035659 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10%2FRFP%2FGEN2685/IE/Understanding the Role of Heat-Shock Proteins in Evolutionary Innovation/ | en_EN |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Caffrey, BE.; Williams, TA.; Jiang, X.; Toft, C.; Hokamp, K.; Fares Riaño, MA. (2012). Proteome-Wide Analysis of Functional Divergence in Bacteria: Exploring a Host of Ecological Adaptations. PLoS ONE. 7:35659-35659. https://doi.org/10.1371/journal.pone.0035659 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0035659 | es_ES |
dc.description.upvformatpinicio | 35659 | es_ES |
dc.description.upvformatpfin | 35659 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.relation.senia | 233111 | es_ES |
dc.identifier.pmid | 22563391 | en_EN |
dc.identifier.pmcid | PMC3338524 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482 | es_ES |
dc.description.references | Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151 | es_ES |
dc.description.references | Pinto, G., Mahler, D. L., Harmon, L. J., & Losos, J. B. (2008). Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proceedings of the Royal Society B: Biological Sciences, 275(1652), 2749-2757. doi:10.1098/rspb.2008.0686 | es_ES |
dc.description.references | Lynch, M., & Katju, V. (2004). The altered evolutionary trajectories of gene duplicates. Trends in Genetics, 20(11), 544-549. doi:10.1016/j.tig.2004.09.001 | es_ES |
dc.description.references | Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689 | es_ES |
dc.description.references | Moran, N. A. (2002). Microbial Minimalism. Cell, 108(5), 583-586. doi:10.1016/s0092-8674(02)00665-7 | es_ES |
dc.description.references | Toft, C., Williams, T. A., & Fares, M. A. (2009). Genome-Wide Functional Divergence after the Symbiosis of Proteobacteria with Insects Unraveled through a Novel Computational Approach. PLoS Computational Biology, 5(4), e1000344. doi:10.1371/journal.pcbi.1000344 | es_ES |
dc.description.references | Dykhuizen, D. E. (1998). Antonie van Leeuwenhoek, 73(1), 25-33. doi:10.1023/a:1000665216662 | es_ES |
dc.description.references | Gans, J. (2005). Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil. Science, 309(5739), 1387-1390. doi:10.1126/science.1112665 | es_ES |
dc.description.references | Pikuta, E. V., Hoover, R. B., & Tang, J. (2007). Microbial Extremophiles at the Limits of Life. Critical Reviews in Microbiology, 33(3), 183-209. doi:10.1080/10408410701451948 | es_ES |
dc.description.references | Pace, N. R. (1997). A Molecular View of Microbial Diversity and the Biosphere. Science, 276(5313), 734-740. doi:10.1126/science.276.5313.734 | es_ES |
dc.description.references | Dyall, S. D. (2004). Ancient Invasions: From Endosymbionts to Organelles. Science, 304(5668), 253-257. doi:10.1126/science.1094884 | es_ES |
dc.description.references | Zhang, J. (2003). Evolution by gene duplication: an update. Trends in Ecology & Evolution, 18(6), 292-298. doi:10.1016/s0169-5347(03)00033-8 | es_ES |
dc.description.references | Lynch, M., & Conery, J. S. (2003). The Origins of Genome Complexity. Science, 302(5649), 1401-1404. doi:10.1126/science.1089370 | es_ES |
dc.description.references | Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405(6784), 299-304. doi:10.1038/35012500 | es_ES |
dc.description.references | McKenzie, G. J., Harris, R. S., Lee, P. L., & Rosenberg, S. M. (2000). The SOS response regulates adaptive mutation. Proceedings of the National Academy of Sciences, 97(12), 6646-6651. doi:10.1073/pnas.120161797 | es_ES |
dc.description.references | Dagan, T., & Martin, W. (2006). Genome Biology, 7(10), 118. doi:10.1186/gb-2006-7-10-118 | es_ES |
dc.description.references | Kimura, M. (1983). The Neutral Theory of Molecular Evolution. doi:10.1017/cbo9780511623486 | es_ES |
dc.description.references | Yang, Z., & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution, 15(12), 496-503. doi:10.1016/s0169-5347(00)01994-7 | es_ES |
dc.description.references | Suzuki, Y., & Gojobori, T. (1999). A method for detecting positive selection at single amino acid sites. Molecular Biology and Evolution, 16(10), 1315-1328. doi:10.1093/oxfordjournals.molbev.a026042 | es_ES |
dc.description.references | Yang, Z., & Nielsen, R. (2002). Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Molecular Biology and Evolution, 19(6), 908-917. doi:10.1093/oxfordjournals.molbev.a004148 | es_ES |
dc.description.references | Fares, M. A., Elena, S. F., Ortiz, J., Moya, A., & Barrio, E. (2002). A Sliding Window-Based Method to Detect Selective Constraints in Protein-Coding Genes and Its Application to RNA Viruses. Journal of Molecular Evolution, 55(5), 509-521. doi:10.1007/s00239-002-2346-9 | es_ES |
dc.description.references | Suzuki, Y. (2004). New Methods for Detecting Positive Selection at Single Amino Acid Sites. Journal of Molecular Evolution, 59(1). doi:10.1007/s00239-004-2599-6 | es_ES |
dc.description.references | Zhang, J. (2004). Frequent False Detection of Positive Selection by the Likelihood Method with Branch-Site Models. Molecular Biology and Evolution, 21(7), 1332-1339. doi:10.1093/molbev/msh117 | es_ES |
dc.description.references | Suzuki, Y. (2004). Three-Dimensional Window Analysis for Detecting Positive Selection at Structural Regions of Proteins. Molecular Biology and Evolution, 21(12), 2352-2359. doi:10.1093/molbev/msh249 | es_ES |
dc.description.references | Zhang, J. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Molecular Biology and Evolution, 22(12), 2472-2479. doi:10.1093/molbev/msi237 | es_ES |
dc.description.references | Berglund, A.-C., Wallner, B., Elofsson, A., & Liberles, D. A. (2005). Tertiary Windowing to Detect Positive Diversifying Selection. Journal of Molecular Evolution, 60(4), 499-504. doi:10.1007/s00239-004-0223-4 | es_ES |
dc.description.references | Gu, X. (1999). Statistical methods for testing functional divergence after gene duplication. Molecular Biology and Evolution, 16(12), 1664-1674. doi:10.1093/oxfordjournals.molbev.a026080 | es_ES |
dc.description.references | Gu, X. (2001). Mathematical Modeling for Functional Divergence after Gene Duplication. Journal of Computational Biology, 8(3), 221-234. doi:10.1089/10665270152530827 | es_ES |
dc.description.references | Gu, X. (2006). A Simple Statistical Method for Estimating Type-II (Cluster-Specific) Functional Divergence of Protein Sequences. Molecular Biology and Evolution, 23(10), 1937-1945. doi:10.1093/molbev/msl056 | es_ES |
dc.description.references | Williams, T. A., Codoñer, F. M., Toft, C., & Fares, M. A. (2010). Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends in Genetics, 26(2), 47-51. doi:10.1016/j.tig.2009.11.009 | es_ES |
dc.description.references | Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., … Natale, D. A. (2003). BMC Bioinformatics, 4(1), 41. doi:10.1186/1471-2105-4-41 | es_ES |
dc.description.references | Lake, J. A. (1999). GENOMICS:Mix and Match in the Tree of Life. Science, 283(5410), 2027-2028. doi:10.1126/science.283.5410.2027 | es_ES |
dc.description.references | Mushegian, A. R., & Koonin, E. V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences, 93(19), 10268-10273. doi:10.1073/pnas.93.19.10268 | es_ES |
dc.description.references | Azuma, Y., & Ota, M. (2009). An evaluation of minimal cellular functions to sustain a bacterial cell. BMC Systems Biology, 3(1). doi:10.1186/1752-0509-3-111 | es_ES |
dc.description.references | Crick, F. H. C. (1968). The origin of the genetic code. Journal of Molecular Biology, 38(3), 367-379. doi:10.1016/0022-2836(68)90392-6 | es_ES |
dc.description.references | Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.x | es_ES |
dc.description.references | Kampinga, H. H., Dynlacht, J. R., & Dikomey, E. (2004). Mechanism of radiosensitization by hyperthermia (43°C) as derived from studies with DNA repair defective mutant cell lines. International Journal of Hyperthermia, 20(2), 131-139. doi:10.1080/02656730310001627713 | es_ES |
dc.description.references | Laszlo, A. (1992). The effects of hyperthermia on mammalian cell structure and function. Cell Proliferation, 25(2), 59-87. doi:10.1111/j.1365-2184.1992.tb01482.x | es_ES |
dc.description.references | Kregel, K. C. (2002). Invited Review: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology, 92(5), 2177-2186. doi:10.1152/japplphysiol.01267.2001 | es_ES |
dc.description.references | Lepock, J. R. (1997). Protein Denaturation During Heat Shock. Advances in Molecular and Cell Biology, 223-259. doi:10.1016/s1569-2558(08)60079-x | es_ES |
dc.description.references | Degnan, P. H. (2005). Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Research, 15(8), 1023-1033. doi:10.1101/gr.3771305 | es_ES |
dc.description.references | Gil, R., Sabater-Munoz, B., Latorre, A., Silva, F. J., & Moya, A. (2002). Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life. Proceedings of the National Academy of Sciences, 99(7), 4454-4458. doi:10.1073/pnas.062067299 | es_ES |
dc.description.references | Perez-Brocal, V., Gil, R., Ramos, S., Lamelas, A., Postigo, M., Michelena, J. M., … Latorre, A. (2006). A Small Microbial Genome: The End of a Long Symbiotic Relationship? Science, 314(5797), 312-313. doi:10.1126/science.1130441 | es_ES |
dc.description.references | Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., & Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407(6800), 81-86. doi:10.1038/35024074 | es_ES |
dc.description.references | Tamas, I. (2002). 50 Million Years of Genomic Stasis in Endosymbiotic Bacteria. Science, 296(5577), 2376-2379. doi:10.1126/science.1071278 | es_ES |
dc.description.references | Van Ham, R. C. H. J., Kamerbeek, J., Palacios, C., Rausell, C., Abascal, F., Bastolla, U., … Moya, A. (2003). Reductive genome evolution in Buchnera aphidicola. Proceedings of the National Academy of Sciences, 100(2), 581-586. doi:10.1073/pnas.0235981100 | es_ES |
dc.description.references | Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H. E., Moran, N. A., & Hattori, M. (2006). The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella. Science, 314(5797), 267-267. doi:10.1126/science.1134196 | es_ES |
dc.description.references | Baron, C. (2010). Antivirulence drugs to target bacterial secretion systems. Current Opinion in Microbiology, 13(1), 100-105. doi:10.1016/j.mib.2009.12.003 | es_ES |
dc.description.references | Douglas, A. E. (1998). Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic BacteriaBuchnera. Annual Review of Entomology, 43(1), 17-37. doi:10.1146/annurev.ento.43.1.17 | es_ES |
dc.description.references | Sandström, J., Telang, A., & Moran, N. . (2000). Nutritional enhancement of host plants by aphids — a comparison of three aphid species on grasses. Journal of Insect Physiology, 46(1), 33-40. doi:10.1016/s0022-1910(99)00098-0 | es_ES |
dc.description.references | Anderson, B. E., & Neuman, M. A. (1997). Bartonella spp. as emerging human pathogens. Clinical Microbiology Reviews, 10(2), 203-219. doi:10.1128/cmr.10.2.203 | es_ES |
dc.description.references | Dramsi, S., & Cossart, P. (1998). INTRACELLULAR PATHOGENS AND THE ACTIN CYTOSKELETON. Annual Review of Cell and Developmental Biology, 14(1), 137-166. doi:10.1146/annurev.cellbio.14.1.137 | es_ES |
dc.description.references | Dehio, C. (2001). Bartonella interactions with endothelial cells and erythrocytes. Trends in Microbiology, 9(6), 279-285. doi:10.1016/s0966-842x(01)02047-9 | es_ES |
dc.description.references | Ihler, G. M. (1996). Bartonella bacilliformis: dangerous pathogen slowly emerging from deep background. FEMS Microbiology Letters, 144(1), 1-11. doi:10.1111/j.1574-6968.1996.tb08501.x | es_ES |
dc.description.references | Fricke, W. F., Wright, M. S., Lindell, A. H., Harkins, D. M., Baker-Austin, C., Ravel, J., & Stepanauskas, R. (2008). Insights into the Environmental Resistance Gene Pool from the Genome Sequence of the Multidrug-Resistant Environmental Isolate Escherichia coli SMS-3-5. Journal of Bacteriology, 190(20), 6779-6794. doi:10.1128/jb.00661-08 | es_ES |
dc.description.references | Ren, C.-P., Beatson, S. A., Parkhill, J., & Pallen, M. J. (2005). The Flag-2 Locus, an Ancestral Gene Cluster, Is Potentially Associated with a Novel Flagellar System from Escherichia coli. Journal of Bacteriology, 187(4), 1430-1440. doi:10.1128/jb.187.4.1430-1440.2005 | es_ES |
dc.description.references | Manges, A. R., Johnson, J. R., Foxman, B., O’Bryan, T. T., Fullerton, K. E., & Riley, L. W. (2001). Widespread Distribution of Urinary Tract Infections Caused by a Multidrug-ResistantEscherichia coliClonal Group. New England Journal of Medicine, 345(14), 1007-1013. doi:10.1056/nejmoa011265 | es_ES |
dc.description.references | Cascales, E., & Christie, P. J. (2003). The versatile bacterial type IV secretion systems. Nature Reviews Microbiology, 1(2), 137-149. doi:10.1038/nrmicro753 | es_ES |
dc.description.references | Bailey, S., Ward, D., Middleton, R., Grossmann, J. G., & Zambryski, P. C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proceedings of the National Academy of Sciences, 103(8), 2582-2587. doi:10.1073/pnas.0511216103 | es_ES |
dc.description.references | Altenhoff, A. M., & Dessimoz, C. (2009). Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods. PLoS Computational Biology, 5(1), e1000262. doi:10.1371/journal.pcbi.1000262 | es_ES |
dc.description.references | Roth, A. C., Gonnet, G. H., & Dessimoz, C. (2008). Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-518 | es_ES |
dc.description.references | Schneider, A., Dessimoz, C., & Gonnet, G. H. (2007). OMA Browser Exploring orthologous relations across 352 complete genomes. Bioinformatics, 23(16), 2180-2182. doi:10.1093/bioinformatics/btm295 | es_ES |
dc.description.references | Tatusov, R. L. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 29(1), 22-28. doi:10.1093/nar/29.1.22 | es_ES |
dc.description.references | Lima, T., Auchincloss, A. H., Coudert, E., Keller, G., Michoud, K., Rivoire, C., … Bairoch, A. (2009). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Research, 37(Database), D471-D478. doi:10.1093/nar/gkn661 | es_ES |
dc.description.references | Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14(7), 685-695. doi:10.1093/oxfordjournals.molbev.a025808 | es_ES |
dc.description.references | Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x | es_ES |
dc.description.references | Dutheil, J., Gaillard, S., Bazin, E., Glémin, S., Ranwez, V., Galtier, N., & Belkhir, K. (2006). BMC Bioinformatics, 7(1), 188. doi:10.1186/1471-2105-7-188 | es_ES |
dc.description.references | Gu, X., & Vander Velden, K. (2002). DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics, 18(3), 500-501. doi:10.1093/bioinformatics/18.3.500 | es_ES |
dc.description.references | Stamatakis, A., Ludwig, T., & Meier, H. (2004). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4), 456-463. doi:10.1093/bioinformatics/bti191 | es_ES |
dc.description.references | Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088 | es_ES |
dc.description.references | Baron, C. (2006). VirB8: a conserved type IV secretion system assembly factor and drug targetThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochemistry and Cell Biology, 84(6), 890-899. doi:10.1139/o06-148 | es_ES |