Mostrar el registro sencillo del ítem
dc.contributor.author | Pons Puig, Clara | es_ES |
dc.contributor.author | Martí, Cristina | es_ES |
dc.contributor.author | Forment Millet, José Javier | es_ES |
dc.contributor.author | Crisosto, Carlos H. | es_ES |
dc.contributor.author | Dandekar, Abhaya M. | es_ES |
dc.contributor.author | Granell Richart, Antonio | es_ES |
dc.date.accessioned | 2016-01-13T10:58:10Z | |
dc.date.available | 2016-01-13T10:58:10Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/59793 | |
dc.description.abstract | Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. | es_ES |
dc.description.sponsorship | This work was supported by the National Research Initiative of USDA's National Institute of Food and Agriculture (NIFA) grant # 2008-35300-04432 and US-Israel Binational Agriculture Research and Development Fund (BARD) Grant no. US-4027-07. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Peach fruits | es_ES |
dc.subject | Fruit Cold Response | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0090706 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NIFA//2008-35300-04432/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BARD//US-4027-07/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Pons Puig, C.; Martí, C.; Forment Millet, JJ.; Crisosto, CH.; Dandekar, AM.; Granell Richart, A. (2014). A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS ONE. 9(3):1-21. https://doi.org/10.1371/journal.pone.0090706 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0090706 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 284251 | es_ES |
dc.identifier.pmid | 24598973 | en_EN |
dc.identifier.pmcid | PMC3944608 | en_EN |
dc.contributor.funder | National Institute of Food and Agriculture, EEUU | es_ES |
dc.contributor.funder | U.S. - Israel Binational Agricultural Research and Development Fund | es_ES |
dc.contributor.funder | U.S. Department of Agriculture | es_ES |
dc.description.references | Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 571-599. doi:10.1146/annurev.arplant.50.1.571 | es_ES |
dc.description.references | Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Chapter 2 Cold Signalling and Cold Acclimation in Plants. In: Jean-Claude K, Michel D, editors. Advances in Botanical Research: Academic Press. pp. 35–150. | es_ES |
dc.description.references | Jaglo-Ottosen, K. R. (1998). Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science, 280(5360), 104-106. doi:10.1126/science.280.5360.104 | es_ES |
dc.description.references | Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M., & Thomashow, M. F. (1998). Low temperature regulation of theArabidopsisCBF family of AP2 transcriptional activators as an early step in cold-inducedCORgene expression. The Plant Journal, 16(4), 433-442. doi:10.1046/j.1365-313x.1998.00310.x | es_ES |
dc.description.references | Fowler, S., & Thomashow, M. F. (2002). Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. The Plant Cell, 14(8), 1675-1690. doi:10.1105/tpc.003483 | es_ES |
dc.description.references | Lee, Y. P., Fleming, A. J., Körner, C., & Meins Jr, F. (2009). Differential expression of the CBF pathway and cell cycle-related genes inArabidopsisaccessions in response to chronic low-temperature exposure. Plant Biology, 11(3), 273-283. doi:10.1111/j.1438-8677.2008.00122.x | es_ES |
dc.description.references | Chinnusamy, V. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17(8), 1043-1054. doi:10.1101/gad.1077503 | es_ES |
dc.description.references | Doherty, C. J., Van Buskirk, H. A., Myers, S. J., & Thomashow, M. F. (2009). Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance. The Plant Cell, 21(3), 972-984. doi:10.1105/tpc.108.063958 | es_ES |
dc.description.references | Zhu, J., Jeong, J. C., Zhu, Y., Sokolchik, I., Miyazaki, S., Zhu, J.-K., … Bressan, R. A. (2008). Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences, 105(12), 4945-4950. doi:10.1073/pnas.0801029105 | es_ES |
dc.description.references | Zhu, J., Shi, H., Lee, B. -h., Damsz, B., Cheng, S., Stirm, V., … Bressan, R. A. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences, 101(26), 9873-9878. doi:10.1073/pnas.0403166101 | es_ES |
dc.description.references | Zhu, J., Verslues, P. E., Zheng, X., Lee, B. -h., Zhan, X., Manabe, Y., … Bressan, R. A. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences, 102(28), 9966-9971. doi:10.1073/pnas.0503960102 | es_ES |
dc.description.references | Lee, B., Kapoor, A., Zhu, J., & Zhu, J.-K. (2006). STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and Stress Tolerance in Arabidopsis. The Plant Cell, 18(7), 1736-1749. doi:10.1105/tpc.106.042184 | es_ES |
dc.description.references | Xiong, L., Lee, H., Ishitani, M., Tanaka, Y., Stevenson, B., Koiwa, H., … Zhu, J.-K. (2002). Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences, 99(16), 10899-10904. doi:10.1073/pnas.162111599 | es_ES |
dc.description.references | Guo, Y., Xiong, L., Ishitani, M., & Zhu, J.-K. (2002). An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences, 99(11), 7786-7791. doi:10.1073/pnas.112040099 | es_ES |
dc.description.references | Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., … Hasegawa, P. M. (2007). SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis. The Plant Cell, 19(4), 1403-1414. doi:10.1105/tpc.106.048397 | es_ES |
dc.description.references | Dong, C.-H., Agarwal, M., Zhang, Y., Xie, Q., & Zhu, J.-K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences, 103(21), 8281-8286. doi:10.1073/pnas.0602874103 | es_ES |
dc.description.references | Xiong, L., Ishitani, M., Lee, H., & Zhu, J.-K. (1999). HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. The Plant Journal, 19(5), 569-578. doi:10.1046/j.1365-313x.1999.00558.x | es_ES |
dc.description.references | Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses: Figure 1. Plant Physiology, 149(1), 88-95. doi:10.1104/pp.108.129791 | es_ES |
dc.description.references | Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate Accumulation Inhibits Growth at Chilling Temperature in Arabidopsis. Plant Physiology, 135(2), 1040-1049. doi:10.1104/pp.104.041293 | es_ES |
dc.description.references | Lee, B., Henderson, D. A., & Zhu, J.-K. (2005). The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. The Plant Cell, 17(11), 3155-3175. doi:10.1105/tpc.105.035568 | es_ES |
dc.description.references | Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 1(2), e26. doi:10.1371/journal.pgen.0010026 | es_ES |
dc.description.references | Jung, C., Lyou, S. H., Yeu, S., Kim, M. A., Rhee, S., Kim, M., … Cheong, J.-J. (2007). Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 26(7), 1053-1063. doi:10.1007/s00299-007-0311-1 | es_ES |
dc.description.references | Shi, Y., Tian, S., Hou, L., Huang, X., Zhang, X., Guo, H., & Yang, S. (2012). Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type-A ARR Genes in Arabidopsis. The Plant Cell, 24(6), 2578-2595. doi:10.1105/tpc.112.098640 | es_ES |
dc.description.references | Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., … Thomashow, M. F. (2001). Components of the Arabidopsis C-Repeat/Dehydration-Responsive Element Binding Factor Cold-Response Pathway Are Conserved inBrassica napus and Other Plant Species. Plant Physiology, 127(3), 910-917. doi:10.1104/pp.010548 | es_ES |
dc.description.references | Zhao, D. Y., Shen, L., Fan, B., Liu, K. L., Yu, M. M., Zheng, Y., … Sheng, J. P. (2009). Physiological and Genetic Properties of Tomato Fruits from 2 Cultivars Differing in Chilling Tolerance at Cold Storage. Journal of Food Science, 74(5), C348-C352. doi:10.1111/j.1750-3841.2009.01156.x | es_ES |
dc.description.references | Carvallo, M. A., Pino, M.-T., Jeknić, Z., Zou, C., Doherty, C. J., Shiu, S.-H., … Thomashow, M. F. (2011). A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. Journal of Experimental Botany, 62(11), 3807-3819. doi:10.1093/jxb/err066 | es_ES |
dc.description.references | Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., Stockinger, E. J., & Thomashow, M. F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerantArabidopsis. The Plant Journal, 39(6), 905-919. doi:10.1111/j.1365-313x.2004.02176.x | es_ES |
dc.description.references | Tacken, E., Ireland, H., Gunaseelan, K., Karunairetnam, S., Wang, D., Schultz, K., … Schaffer, R. J. (2010). The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening. Plant Physiology, 153(1), 294-305. doi:10.1104/pp.109.151092 | es_ES |
dc.description.references | EL-SHARKAWY, I., JONES, B., GENTZBITTEL, L., LELIEVRE, J.-M., PECH, J. C., & LATCHE, A. (2004). Differential regulation of ACC synthase genes in cold-dependent and -independent ripening in pear fruit. Plant, Cell and Environment, 27(10), 1197-1210. doi:10.1111/j.1365-3040.2004.01218.x | es_ES |
dc.description.references | Lyons, J. M. (1973). Chilling Injury in Plants. Annual Review of Plant Physiology, 24(1), 445-466. doi:10.1146/annurev.pp.24.060173.002305 | es_ES |
dc.description.references | Crisosto, C. H., Mitchell, F. G., & Ju, Z. (1999). Susceptibility to Chilling Injury of Peach, Nectarine, and Plum Cultivars Grown in California. HortScience, 34(6), 1116-1118. doi:10.21273/hortsci.34.6.1116 | es_ES |
dc.description.references | Peace, C. P., Crisosto, C. H., Garner, D. T., Dandekar, A. M., Gradziel, T. M., & Bliss, F. A. (2006). GENETIC CONTROL OF INTERNAL BREAKDOWN IN PEACH. Acta Horticulturae, (713), 489-496. doi:10.17660/actahortic.2006.713.73 | es_ES |
dc.description.references | Ogundiwin, E. A., Peace, C. P., Nicolet, C. M., Rashbrook, V. K., Gradziel, T. M., Bliss, F. A., … Crisosto, C. H. (2008). Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genetics & Genomes, 4(3), 543-554. doi:10.1007/s11295-007-0130-0 | es_ES |
dc.description.references | Ogundiwin, E. A., Peace, C. P., Gradziel, T. M., Parfitt, D. E., Bliss, F. A., & Crisosto, C. H. (2009). A fruit quality gene map of Prunus. BMC Genomics, 10(1), 587. doi:10.1186/1471-2164-10-587 | es_ES |
dc.description.references | Dhanapal AP, Martínez-García PJ, Gradziel TM, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. Journal of Plant Science and Molecular Breeding 1. | es_ES |
dc.description.references | BUESCHER, R. W., & FURMANSKI, R. J. (1978). ROLE OF PECTINESTERASE AND POLYGALACTURONASE IN THE FORMATION OF WOOLLINESS IN PEACHES. Journal of Food Science, 43(1), 264-266. doi:10.1111/j.1365-2621.1978.tb09788.x | es_ES |
dc.description.references | Ben-Arie, R., & Sonego, L. (1980). Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochemistry, 19(12), 2553-2555. doi:10.1016/s0031-9422(00)83917-5 | es_ES |
dc.description.references | Brummell, D. A. (2004). Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. Journal of Experimental Botany, 55(405), 2041-2052. doi:10.1093/jxb/erh228 | es_ES |
dc.description.references | González-Agüero, M., Pavez, L., Ibáñez, F., Pacheco, I., Campos-Vargas, R., Meisel, L. A., … Cambiazo, V. (2008). Identification of woolliness response genes in peach fruit after post-harvest treatments. Journal of Experimental Botany, 59(8), 1973-1986. doi:10.1093/jxb/ern069 | es_ES |
dc.description.references | Vizoso, P., Meisel, L. A., Tittarelli, A., Latorre, M., Saba, J., Caroca, R., … Silva, H. (2009). Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics, 10(1), 423. doi:10.1186/1471-2164-10-423 | es_ES |
dc.description.references | Tittarelli, A., Santiago, M., Morales, A., Meisel, L. A., & Silva, H. (2009). Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biology, 9(1), 121. doi:10.1186/1471-2229-9-121 | es_ES |
dc.description.references | Falara, V., Manganaris, G. A., Ziliotto, F., Manganaris, A., Bonghi, C., Ramina, A., & Kanellis, A. K. (2011). A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Functional & Integrative Genomics, 11(2), 357-368. doi:10.1007/s10142-010-0204-1 | es_ES |
dc.description.references | Campos-Vargas, R., Becerra, O., Baeza-Yates, R., Cambiazo, V., González, M., Meisel, L., … Defilippi, B. G. (2006). Seasonal variation in the development of chilling injury in ‘O’Henry’ peaches. Scientia Horticulturae, 110(1), 79-83. doi:10.1016/j.scienta.2006.06.019 | es_ES |
dc.description.references | Ogundiwin, E. A., Martí, C., Forment, J., Pons, C., Granell, A., Gradziel, T. M., … Crisosto, C. H. (2008). Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Molecular Biology, 68(4-5), 379-397. doi:10.1007/s11103-008-9378-5 | es_ES |
dc.description.references | Dagar, A., Pons Puig, C., Marti Ibanez, C., Ziliotto, F., Bonghi, C., H. Crisosto, C., … Granell, A. (2012). Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genetics & Genomes, 9(1), 223-235. doi:10.1007/s11295-012-0549-9 | es_ES |
dc.description.references | Giovannoni, J. J., Wing, R. A., Ganal, M. W., & Tanksley, S. D. (1991). Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19(23), 6553-6568. doi:10.1093/nar/19.23.6553 | es_ES |
dc.description.references | Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828 | es_ES |
dc.description.references | Peace, C. P., Crisosto, C. H., & Gradziel, T. M. (2005). Endopolygalacturonase: a Candidate Gene for Freestone and Melting Fleshin Peach. Molecular Breeding, 16(1), 21-31. doi:10.1007/s11032-005-0828-3 | es_ES |
dc.description.references | Kader AA, Mitchell FG (1989) Maturity and quality. In: James H. LaRue RSJ, editor. Peaches, Plums, and Nectarines: Growing and Handling for Fresh Market (Oakland, Calif.) Cooperative Extension, University of California, Division of Agriculture and Natural Resources pp. 191–196. | es_ES |
dc.description.references | Crisosto, C. H., & Labavitch, J. M. (2002). Developing a quantitative method to evaluate peach (Prunus persica) flesh mealiness. Postharvest Biology and Technology, 25(2), 151-158. doi:10.1016/s0925-5214(01)00183-1 | es_ES |
dc.description.references | Martínez-García, P. J., Peace, C. P., Parfitt, D. E., Ogundiwin, E. A., Fresnedo-Ramírez, J., Dandekar, A. M., … Crisosto, C. H. (2011). Influence of year and genetic factors on chilling injury susceptibility in peach (Prunus persica (L.) Batsch). Euphytica, 185(2), 267-280. doi:10.1007/s10681-011-0572-1 | es_ES |
dc.description.references | Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 | es_ES |
dc.description.references | Cheung, K. J. (2003). A Microarray-Based Antibiotic Screen Identifies a Regulatory Role for Supercoiling in the Osmotic Stress Response of Escherichia coli. Genome Research, 13(2), 206-215. doi:10.1101/gr.401003 | es_ES |
dc.description.references | Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16(6), 276-277. doi:10.1016/s0168-9525(00)02024-2 | es_ES |
dc.description.references | Lazzari, B., Caprera, A., Vecchietti, A., Stella, A., Milanesi, L., & Pozzi, C. (2005). ESTree db: a Tool for Peach Functional Genomics. BMC Bioinformatics, 6(Suppl 4), S16. doi:10.1186/1471-2105-6-s4-s16 | es_ES |
dc.description.references | Jung, S., Staton, M., Lee, T., Blenda, A., Svancara, R., Abbott, A., & Main, D. (2007). GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Research, 36(Database), D1034-D1040. doi:10.1093/nar/gkm803 | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |
dc.description.references | Perez-Llamas, C., & Lopez-Bigas, N. (2011). Gitools: Analysis and Visualisation of Genomic Data Using Interactive Heat-Maps. PLoS ONE, 6(5), e19541. doi:10.1371/journal.pone.0019541 | es_ES |
dc.description.references | Crisosto, C. H., Johnson, R. S., DeJong, T., & Day, K. R. (1997). Orchard Factors Affecting Postharvest Stone Fruit Quality. HortScience, 32(5), 820-823. doi:10.21273/hortsci.32.5.820 | es_ES |
dc.description.references | Zhang, S., & Wang, X. (2011). Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. Journal of Plant Physiology, 168(17), 2093-2101. doi:10.1016/j.jplph.2011.06.010 | es_ES |
dc.description.references | Hannah, M. A., Wiese, D., Freund, S., Fiehn, O., Heyer, A. G., & Hincha, D. K. (2006). Natural Genetic Variation of Freezing Tolerance in Arabidopsis. Plant Physiology, 142(1), 98-112. doi:10.1104/pp.106.081141 | es_ES |
dc.description.references | USADEL, B., BLÄSING, O. E., GIBON, Y., POREE, F., HÖHNE, M., GÜNTER, M., … STITT, M. (2008). Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant, Cell & Environment, 31(4), 518-547. doi:10.1111/j.1365-3040.2007.01763.x | es_ES |
dc.description.references | Lam, H. M., Peng, S., & Coruzzi, G. M. (1994). Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana. Plant Physiology, 106(4), 1347-1357. doi:10.1104/pp.106.4.1347 | es_ES |
dc.description.references | Lin, J.-F., & Wu, S.-H. (2004). Molecular events in senescingArabidopsisleaves. The Plant Journal, 39(4), 612-628. doi:10.1111/j.1365-313x.2004.02160.x | es_ES |
dc.description.references | Kreps, J. A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., & Harper, J. F. (2002). Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiology, 130(4), 2129-2141. doi:10.1104/pp.008532 | es_ES |
dc.description.references | Dai, F., Huang, Y., Zhou, M., & Zhang, G. (2009). The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biologia Plantarum, 53(2), 257-262. doi:10.1007/s10535-009-0048-5 | es_ES |
dc.description.references | Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., & Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89(4), 555-573. doi:10.1002/jsfa.3468 | es_ES |
dc.description.references | Provart, N. J., Gil, P., Chen, W., Han, B., Chang, H.-S., Wang, X., & Zhu, T. (2003). Gene Expression Phenotypes of Arabidopsis Associated with Sensitivity to Low Temperatures. Plant Physiology, 132(2), 893-906. doi:10.1104/pp.103.021261 | es_ES |
dc.description.references | Narsai, R., Ivanova, A., Ng, S., & Whelan, J. (2010). Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biology, 10(1), 56. doi:10.1186/1471-2229-10-56 | es_ES |
dc.description.references | Medina, J., Catalá, R., & Salinas, J. (2011). The CBFs: Three arabidopsis transcription factors to cold acclimate. Plant Science, 180(1), 3-11. doi:10.1016/j.plantsci.2010.06.019 | es_ES |
dc.description.references | Wisniewski, M., Norelli, J., Bassett, C., Artlip, T., & Macarisin, D. (2011). Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta, 233(5), 971-983. doi:10.1007/s00425-011-1358-3 | es_ES |
dc.description.references | Feng, X.-M., Zhao, Q., Zhao, L.-L., Qiao, Y., Xie, X.-B., Li, H.-F., … Hao, Y.-J. (2012). The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology, 12(1), 22. doi:10.1186/1471-2229-12-22 | es_ES |
dc.description.references | Miura K, Shiba H, Ohta M, Kang SW, Sato A, <etal>et al</etal>.. (2012) <italic>SlICE1</italic> encoding a MYC-type transcription factor controls cold tolerance in tomato, <italic>Solanum lycopersicum</italic>. Plant Biotechnology advpub. | es_ES |
dc.description.references | Huq, E., Tepperman, J. M., & Quail, P. H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 97(17), 9789-9794. doi:10.1073/pnas.170283997 | es_ES |
dc.description.references | Takase, T., Nakazawa, M., Ishikawa, A., Manabe, K., & Matsui, M. (2003). DFL2, a New Member of the Arabidopsis GH3 Gene Family, is Involved in Red Light-Specific Hypocotyl Elongation. Plant and Cell Physiology, 44(10), 1071-1080. doi:10.1093/pcp/pcg130 | es_ES |
dc.description.references | Johnson, E., Bradley, M., Harberd, N. P., & Whitelam, G. C. (1994). Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiology, 105(1), 141-149. doi:10.1104/pp.105.1.141 | es_ES |
dc.description.references | Kim, D.-H., Kang, J.-G., Yang, S.-S., Chung, K.-S., Song, P.-S., & Park, C.-M. (2002). A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis. The Plant Cell, 14(12), 3043-3056. doi:10.1105/tpc.005306 | es_ES |
dc.description.references | Kim, H., Kim, Y., Park, J., & Kim, J. (2002). Light signalling mediated by phytochrome plays an important role in cold‐induced gene expression through the C‐repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. The Plant Journal, 29(6), 693-704. doi:10.1046/j.1365-313x.2002.01249.x | es_ES |
dc.description.references | Soitamo, A. J., Piippo, M., Allahverdiyeva, Y., Battchikova, N., & Aro, E.-M. (2008). Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biology, 8(1), 13. doi:10.1186/1471-2229-8-13 | es_ES |
dc.description.references | Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108 | es_ES |
dc.description.references | Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x | es_ES |
dc.description.references | Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128 | es_ES |
dc.description.references | Hugouvieux, V. (2002). Localization, Ion Channel Regulation, and Genetic Interactions during Abscisic Acid Signaling of the Nuclear mRNA Cap-Binding Protein, ABH1. PLANT PHYSIOLOGY, 130(3), 1276-1287. doi:10.1104/pp.009480 | es_ES |
dc.description.references | Kariola, T., Brader, G., Helenius, E., Li, J., Heino, P., & Palva, E. T. (2006). EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Physiology, 142(4), 1559-1573. doi:10.1104/pp.106.086223 | es_ES |
dc.description.references | Belin, C., Megies, C., Hauserová, E., & Lopez-Molina, L. (2009). Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling. The Plant Cell, 21(8), 2253-2268. doi:10.1105/tpc.109.067702 | es_ES |
dc.description.references | Trainotti, L., Tadiello, A., & Casadoro, G. (2007). The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany, 58(12), 3299-3308. doi:10.1093/jxb/erm178 | es_ES |
dc.description.references | Zhao, D., Shen, L., Fan, B., Yu, M., Zheng, Y., Lv, S., & Sheng, J. (2009). Ethylene and cold participate in the regulation ofLeCBF1gene expression in postharvest tomato fruits. FEBS Letters, 583(20), 3329-3334. doi:10.1016/j.febslet.2009.09.029 | es_ES |
dc.description.references | Begheldo, M., Manganaris, G. A., Bonghi, C., & Tonutti, P. (2008). Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biology and Technology, 48(1), 84-91. doi:10.1016/j.postharvbio.2007.09.023 | es_ES |
dc.description.references | Kelley, D. R., & Estelle, M. (2012). Ubiquitin-Mediated Control of Plant Hormone Signaling. Plant Physiology, 160(1), 47-55. doi:10.1104/pp.112.200527 | es_ES |
dc.description.references | Lim, G.-H., Zhang, X., Chung, M.-S., Lee, D. J., Woo, Y.-M., Cheong, H.-S., & Kim, C. S. (2009). A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytologist, 185(1), 103-113. doi:10.1111/j.1469-8137.2009.03032.x | es_ES |
dc.description.references | Han, S.-K., Sang, Y., Rodrigues, A., Wu, M.-F., Rodriguez, P. L., & Wagner, D. (2012). The SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Represses Abscisic Acid Responses in the Absence of the Stress Stimulus in Arabidopsis. The Plant Cell, 24(12), 4892-4906. doi:10.1105/tpc.112.105114 | es_ES |
dc.description.references | Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. The Plant Journal, 12(4), 851-861. doi:10.1046/j.1365-313x.1997.12040851.x | es_ES |
dc.description.references | Ueda, A., Li, P., Feng, Y., Vikram, M., Kim, S., Kang, C. H., … Koiwa, H. (2008). The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. Plant Molecular Biology, 67(6), 683-697. doi:10.1007/s11103-008-9348-y | es_ES |
dc.description.references | Wang, Y., Liu, C., Li, K., Sun, F., Hu, H., Li, X., … Li, X. (2007). Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Molecular Biology, 64(6), 633-644. doi:10.1007/s11103-007-9182-7 | es_ES |
dc.description.references | Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., … Park, C.-M. (2007). GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 282(13), 10036-10046. doi:10.1074/jbc.m610524200 | es_ES |
dc.description.references | Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology, 52(11), 1873-1903. doi:10.1093/pcp/pcr136 | es_ES |
dc.description.references | Iriti, M., & Faoro, F. (2009). Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution. International Journal of Molecular Sciences, 10(8), 3371-3399. doi:10.3390/ijms10083371 | es_ES |
dc.description.references | Vergne, E., Grand, X., Ballini, E., Chalvon, V., Saindrenan, P., Tharreau, D., … Morel, J.-B. (2010). Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae. BMC Plant Biology, 10(1), 206. doi:10.1186/1471-2229-10-206 | es_ES |
dc.description.references | Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A., … Muday, G. K. (2001). Flavonoids Act as Negative Regulators of Auxin Transport in Vivo in Arabidopsis. Plant Physiology, 126(2), 524-535. doi:10.1104/pp.126.2.524 | es_ES |
dc.description.references | Kitamura, S., Shikazono, N., & Tanaka, A. (2004). TRANSPARENT TESTA 19is involved in the accumulation of both anthocyanins and proanthocyanidins inArabidopsis. The Plant Journal, 37(1), 104-114. doi:10.1046/j.1365-313x.2003.01943.x | es_ES |
dc.description.references | Kitamura, S., Matsuda, F., Tohge, T., Yonekura-Sakakibara, K., Yamazaki, M., Saito, K., & Narumi, I. (2010). Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. The Plant Journal, 62(4), 549-559. doi:10.1111/j.1365-313x.2010.04174.x | es_ES |
dc.description.references | Zhao, J., & Dixon, R. A. (2010). The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science, 15(2), 72-80. doi:10.1016/j.tplants.2009.11.006 | es_ES |
dc.description.references | Bindon, K. A., Bacic, A., & Kennedy, J. A. (2012). Tissue-Specific and Developmental Modifications of Grape Cell Walls Influence the Adsorption of Proanthocyanidins. Journal of Agricultural and Food Chemistry, 60(36), 9249-9260. doi:10.1021/jf301552t | es_ES |
dc.description.references | Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in the tomato. Plant and Cell Physiology. | es_ES |
dc.description.references | Rinaldi, M. A., Liu, J., Enders, T. A., Bartel, B., & Strader, L. C. (2012). A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Molecular Biology, 79(4-5), 359-373. doi:10.1007/s11103-012-9917-y | es_ES |
dc.description.references | Hardenburg RE, Agriculture USDo, Watada AE, Science US, Administration E, et al. (1986) The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks: U.S. Department of Agriculture, Agricultural Research Service. | es_ES |
dc.description.references | Ju, Z., Duan, Y., & Ju, Z. (2000). Leatheriness and mealiness of peaches in relation to fruit maturity and storage temperature. The Journal of Horticultural Science and Biotechnology, 75(1), 86-91. doi:10.1080/14620316.2000.11511205 | es_ES |