- -

A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pons Puig, Clara es_ES
dc.contributor.author Martí, Cristina es_ES
dc.contributor.author Forment Millet, José Javier es_ES
dc.contributor.author Crisosto, Carlos H. es_ES
dc.contributor.author Dandekar, Abhaya M. es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2016-01-13T10:58:10Z
dc.date.available 2016-01-13T10:58:10Z
dc.date.issued 2014-03
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/59793
dc.description.abstract Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. es_ES
dc.description.sponsorship This work was supported by the National Research Initiative of USDA's National Institute of Food and Agriculture (NIFA) grant # 2008-35300-04432 and US-Israel Binational Agriculture Research and Development Fund (BARD) Grant no. US-4027-07. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Peach fruits es_ES
dc.subject Fruit Cold Response es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0090706
dc.relation.projectID info:eu-repo/grantAgreement/NIFA//2008-35300-04432/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BARD//US-4027-07/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Pons Puig, C.; Martí, C.; Forment Millet, JJ.; Crisosto, CH.; Dandekar, AM.; Granell Richart, A. (2014). A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS ONE. 9(3):1-21. https://doi.org/10.1371/journal.pone.0090706 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0090706 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 284251 es_ES
dc.identifier.pmid 24598973 en_EN
dc.identifier.pmcid PMC3944608 en_EN
dc.contributor.funder National Institute of Food and Agriculture, EEUU es_ES
dc.contributor.funder U.S. - Israel Binational Agricultural Research and Development Fund es_ES
dc.contributor.funder U.S. Department of Agriculture es_ES
dc.description.references Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 571-599. doi:10.1146/annurev.arplant.50.1.571 es_ES
dc.description.references Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Chapter 2 Cold Signalling and Cold Acclimation in Plants. In: Jean-Claude K, Michel D, editors. Advances in Botanical Research: Academic Press. pp. 35–150. es_ES
dc.description.references Jaglo-Ottosen, K. R. (1998). Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science, 280(5360), 104-106. doi:10.1126/science.280.5360.104 es_ES
dc.description.references Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M., & Thomashow, M. F. (1998). Low temperature regulation of theArabidopsisCBF family of AP2 transcriptional activators as an early step in cold-inducedCORgene expression. The Plant Journal, 16(4), 433-442. doi:10.1046/j.1365-313x.1998.00310.x es_ES
dc.description.references Fowler, S., & Thomashow, M. F. (2002). Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. The Plant Cell, 14(8), 1675-1690. doi:10.1105/tpc.003483 es_ES
dc.description.references Lee, Y. P., Fleming, A. J., Körner, C., & Meins Jr, F. (2009). Differential expression of the CBF pathway and cell cycle-related genes inArabidopsisaccessions in response to chronic low-temperature exposure. Plant Biology, 11(3), 273-283. doi:10.1111/j.1438-8677.2008.00122.x es_ES
dc.description.references Chinnusamy, V. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17(8), 1043-1054. doi:10.1101/gad.1077503 es_ES
dc.description.references Doherty, C. J., Van Buskirk, H. A., Myers, S. J., & Thomashow, M. F. (2009). Roles for Arabidopsis CAMTA Transcription Factors in Cold-Regulated Gene Expression and Freezing Tolerance. The Plant Cell, 21(3), 972-984. doi:10.1105/tpc.108.063958 es_ES
dc.description.references Zhu, J., Jeong, J. C., Zhu, Y., Sokolchik, I., Miyazaki, S., Zhu, J.-K., … Bressan, R. A. (2008). Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences, 105(12), 4945-4950. doi:10.1073/pnas.0801029105 es_ES
dc.description.references Zhu, J., Shi, H., Lee, B. -h., Damsz, B., Cheng, S., Stirm, V., … Bressan, R. A. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences, 101(26), 9873-9878. doi:10.1073/pnas.0403166101 es_ES
dc.description.references Zhu, J., Verslues, P. E., Zheng, X., Lee, B. -h., Zhan, X., Manabe, Y., … Bressan, R. A. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences, 102(28), 9966-9971. doi:10.1073/pnas.0503960102 es_ES
dc.description.references Lee, B., Kapoor, A., Zhu, J., & Zhu, J.-K. (2006). STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and Stress Tolerance in Arabidopsis. The Plant Cell, 18(7), 1736-1749. doi:10.1105/tpc.106.042184 es_ES
dc.description.references Xiong, L., Lee, H., Ishitani, M., Tanaka, Y., Stevenson, B., Koiwa, H., … Zhu, J.-K. (2002). Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences, 99(16), 10899-10904. doi:10.1073/pnas.162111599 es_ES
dc.description.references Guo, Y., Xiong, L., Ishitani, M., & Zhu, J.-K. (2002). An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences, 99(11), 7786-7791. doi:10.1073/pnas.112040099 es_ES
dc.description.references Miura, K., Jin, J. B., Lee, J., Yoo, C. Y., Stirm, V., Miura, T., … Hasegawa, P. M. (2007). SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis. The Plant Cell, 19(4), 1403-1414. doi:10.1105/tpc.106.048397 es_ES
dc.description.references Dong, C.-H., Agarwal, M., Zhang, Y., Xie, Q., & Zhu, J.-K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences, 103(21), 8281-8286. doi:10.1073/pnas.0602874103 es_ES
dc.description.references Xiong, L., Ishitani, M., Lee, H., & Zhu, J.-K. (1999). HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. The Plant Journal, 19(5), 569-578. doi:10.1046/j.1365-313x.1999.00558.x es_ES
dc.description.references Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses: Figure 1. Plant Physiology, 149(1), 88-95. doi:10.1104/pp.108.129791 es_ES
dc.description.references Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate Accumulation Inhibits Growth at Chilling Temperature in Arabidopsis. Plant Physiology, 135(2), 1040-1049. doi:10.1104/pp.104.041293 es_ES
dc.description.references Lee, B., Henderson, D. A., & Zhu, J.-K. (2005). The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. The Plant Cell, 17(11), 3155-3175. doi:10.1105/tpc.105.035568 es_ES
dc.description.references Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 1(2), e26. doi:10.1371/journal.pgen.0010026 es_ES
dc.description.references Jung, C., Lyou, S. H., Yeu, S., Kim, M. A., Rhee, S., Kim, M., … Cheong, J.-J. (2007). Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 26(7), 1053-1063. doi:10.1007/s00299-007-0311-1 es_ES
dc.description.references Shi, Y., Tian, S., Hou, L., Huang, X., Zhang, X., Guo, H., & Yang, S. (2012). Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type-A ARR Genes in Arabidopsis. The Plant Cell, 24(6), 2578-2595. doi:10.1105/tpc.112.098640 es_ES
dc.description.references Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., … Thomashow, M. F. (2001). Components of the Arabidopsis C-Repeat/Dehydration-Responsive Element Binding Factor Cold-Response Pathway Are Conserved inBrassica napus and Other Plant Species. Plant Physiology, 127(3), 910-917. doi:10.1104/pp.010548 es_ES
dc.description.references Zhao, D. Y., Shen, L., Fan, B., Liu, K. L., Yu, M. M., Zheng, Y., … Sheng, J. P. (2009). Physiological and Genetic Properties of Tomato Fruits from 2 Cultivars Differing in Chilling Tolerance at Cold Storage. Journal of Food Science, 74(5), C348-C352. doi:10.1111/j.1750-3841.2009.01156.x es_ES
dc.description.references Carvallo, M. A., Pino, M.-T., Jeknić, Z., Zou, C., Doherty, C. J., Shiu, S.-H., … Thomashow, M. F. (2011). A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. Journal of Experimental Botany, 62(11), 3807-3819. doi:10.1093/jxb/err066 es_ES
dc.description.references Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., Stockinger, E. J., & Thomashow, M. F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerantArabidopsis. The Plant Journal, 39(6), 905-919. doi:10.1111/j.1365-313x.2004.02176.x es_ES
dc.description.references Tacken, E., Ireland, H., Gunaseelan, K., Karunairetnam, S., Wang, D., Schultz, K., … Schaffer, R. J. (2010). The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening. Plant Physiology, 153(1), 294-305. doi:10.1104/pp.109.151092 es_ES
dc.description.references EL-SHARKAWY, I., JONES, B., GENTZBITTEL, L., LELIEVRE, J.-M., PECH, J. C., & LATCHE, A. (2004). Differential regulation of ACC synthase genes in cold-dependent and -independent ripening in pear fruit. Plant, Cell and Environment, 27(10), 1197-1210. doi:10.1111/j.1365-3040.2004.01218.x es_ES
dc.description.references Lyons, J. M. (1973). Chilling Injury in Plants. Annual Review of Plant Physiology, 24(1), 445-466. doi:10.1146/annurev.pp.24.060173.002305 es_ES
dc.description.references Crisosto, C. H., Mitchell, F. G., & Ju, Z. (1999). Susceptibility to Chilling Injury of Peach, Nectarine, and Plum Cultivars Grown in California. HortScience, 34(6), 1116-1118. doi:10.21273/hortsci.34.6.1116 es_ES
dc.description.references Peace, C. P., Crisosto, C. H., Garner, D. T., Dandekar, A. M., Gradziel, T. M., & Bliss, F. A. (2006). GENETIC CONTROL OF INTERNAL BREAKDOWN IN PEACH. Acta Horticulturae, (713), 489-496. doi:10.17660/actahortic.2006.713.73 es_ES
dc.description.references Ogundiwin, E. A., Peace, C. P., Nicolet, C. M., Rashbrook, V. K., Gradziel, T. M., Bliss, F. A., … Crisosto, C. H. (2008). Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genetics & Genomes, 4(3), 543-554. doi:10.1007/s11295-007-0130-0 es_ES
dc.description.references Ogundiwin, E. A., Peace, C. P., Gradziel, T. M., Parfitt, D. E., Bliss, F. A., & Crisosto, C. H. (2009). A fruit quality gene map of Prunus. BMC Genomics, 10(1), 587. doi:10.1186/1471-2164-10-587 es_ES
dc.description.references Dhanapal AP, Martínez-García PJ, Gradziel TM, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. Journal of Plant Science and Molecular Breeding 1. es_ES
dc.description.references BUESCHER, R. W., & FURMANSKI, R. J. (1978). ROLE OF PECTINESTERASE AND POLYGALACTURONASE IN THE FORMATION OF WOOLLINESS IN PEACHES. Journal of Food Science, 43(1), 264-266. doi:10.1111/j.1365-2621.1978.tb09788.x es_ES
dc.description.references Ben-Arie, R., & Sonego, L. (1980). Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochemistry, 19(12), 2553-2555. doi:10.1016/s0031-9422(00)83917-5 es_ES
dc.description.references Brummell, D. A. (2004). Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. Journal of Experimental Botany, 55(405), 2041-2052. doi:10.1093/jxb/erh228 es_ES
dc.description.references González-Agüero, M., Pavez, L., Ibáñez, F., Pacheco, I., Campos-Vargas, R., Meisel, L. A., … Cambiazo, V. (2008). Identification of woolliness response genes in peach fruit after post-harvest treatments. Journal of Experimental Botany, 59(8), 1973-1986. doi:10.1093/jxb/ern069 es_ES
dc.description.references Vizoso, P., Meisel, L. A., Tittarelli, A., Latorre, M., Saba, J., Caroca, R., … Silva, H. (2009). Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics, 10(1), 423. doi:10.1186/1471-2164-10-423 es_ES
dc.description.references Tittarelli, A., Santiago, M., Morales, A., Meisel, L. A., & Silva, H. (2009). Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biology, 9(1), 121. doi:10.1186/1471-2229-9-121 es_ES
dc.description.references Falara, V., Manganaris, G. A., Ziliotto, F., Manganaris, A., Bonghi, C., Ramina, A., & Kanellis, A. K. (2011). A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Functional & Integrative Genomics, 11(2), 357-368. doi:10.1007/s10142-010-0204-1 es_ES
dc.description.references Campos-Vargas, R., Becerra, O., Baeza-Yates, R., Cambiazo, V., González, M., Meisel, L., … Defilippi, B. G. (2006). Seasonal variation in the development of chilling injury in ‘O’Henry’ peaches. Scientia Horticulturae, 110(1), 79-83. doi:10.1016/j.scienta.2006.06.019 es_ES
dc.description.references Ogundiwin, E. A., Martí, C., Forment, J., Pons, C., Granell, A., Gradziel, T. M., … Crisosto, C. H. (2008). Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Molecular Biology, 68(4-5), 379-397. doi:10.1007/s11103-008-9378-5 es_ES
dc.description.references Dagar, A., Pons Puig, C., Marti Ibanez, C., Ziliotto, F., Bonghi, C., H. Crisosto, C., … Granell, A. (2012). Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genetics & Genomes, 9(1), 223-235. doi:10.1007/s11295-012-0549-9 es_ES
dc.description.references Giovannoni, J. J., Wing, R. A., Ganal, M. W., & Tanksley, S. D. (1991). Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19(23), 6553-6568. doi:10.1093/nar/19.23.6553 es_ES
dc.description.references Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828 es_ES
dc.description.references Peace, C. P., Crisosto, C. H., & Gradziel, T. M. (2005). Endopolygalacturonase: a Candidate Gene for Freestone and Melting Fleshin Peach. Molecular Breeding, 16(1), 21-31. doi:10.1007/s11032-005-0828-3 es_ES
dc.description.references Kader AA, Mitchell FG (1989) Maturity and quality. In: James H. LaRue RSJ, editor. Peaches, Plums, and Nectarines: Growing and Handling for Fresh Market (Oakland, Calif.) Cooperative Extension, University of California, Division of Agriculture and Natural Resources pp. 191–196. es_ES
dc.description.references Crisosto, C. H., & Labavitch, J. M. (2002). Developing a quantitative method to evaluate peach (Prunus persica) flesh mealiness. Postharvest Biology and Technology, 25(2), 151-158. doi:10.1016/s0925-5214(01)00183-1 es_ES
dc.description.references Martínez-García, P. J., Peace, C. P., Parfitt, D. E., Ogundiwin, E. A., Fresnedo-Ramírez, J., Dandekar, A. M., … Crisosto, C. H. (2011). Influence of year and genetic factors on chilling injury susceptibility in peach (Prunus persica (L.) Batsch). Euphytica, 185(2), 267-280. doi:10.1007/s10681-011-0572-1 es_ES
dc.description.references Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 es_ES
dc.description.references Cheung, K. J. (2003). A Microarray-Based Antibiotic Screen Identifies a Regulatory Role for Supercoiling in the Osmotic Stress Response of Escherichia coli. Genome Research, 13(2), 206-215. doi:10.1101/gr.401003 es_ES
dc.description.references Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics, 16(6), 276-277. doi:10.1016/s0168-9525(00)02024-2 es_ES
dc.description.references Lazzari, B., Caprera, A., Vecchietti, A., Stella, A., Milanesi, L., & Pozzi, C. (2005). ESTree db: a Tool for Peach Functional Genomics. BMC Bioinformatics, 6(Suppl 4), S16. doi:10.1186/1471-2105-6-s4-s16 es_ES
dc.description.references Jung, S., Staton, M., Lee, T., Blenda, A., Svancara, R., Abbott, A., & Main, D. (2007). GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Research, 36(Database), D1034-D1040. doi:10.1093/nar/gkm803 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Perez-Llamas, C., & Lopez-Bigas, N. (2011). Gitools: Analysis and Visualisation of Genomic Data Using Interactive Heat-Maps. PLoS ONE, 6(5), e19541. doi:10.1371/journal.pone.0019541 es_ES
dc.description.references Crisosto, C. H., Johnson, R. S., DeJong, T., & Day, K. R. (1997). Orchard Factors Affecting Postharvest Stone Fruit Quality. HortScience, 32(5), 820-823. doi:10.21273/hortsci.32.5.820 es_ES
dc.description.references Zhang, S., & Wang, X. (2011). Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. Journal of Plant Physiology, 168(17), 2093-2101. doi:10.1016/j.jplph.2011.06.010 es_ES
dc.description.references Hannah, M. A., Wiese, D., Freund, S., Fiehn, O., Heyer, A. G., & Hincha, D. K. (2006). Natural Genetic Variation of Freezing Tolerance in Arabidopsis. Plant Physiology, 142(1), 98-112. doi:10.1104/pp.106.081141 es_ES
dc.description.references USADEL, B., BLÄSING, O. E., GIBON, Y., POREE, F., HÖHNE, M., GÜNTER, M., … STITT, M. (2008). Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant, Cell & Environment, 31(4), 518-547. doi:10.1111/j.1365-3040.2007.01763.x es_ES
dc.description.references Lam, H. M., Peng, S., & Coruzzi, G. M. (1994). Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana. Plant Physiology, 106(4), 1347-1357. doi:10.1104/pp.106.4.1347 es_ES
dc.description.references Lin, J.-F., & Wu, S.-H. (2004). Molecular events in senescingArabidopsisleaves. The Plant Journal, 39(4), 612-628. doi:10.1111/j.1365-313x.2004.02160.x es_ES
dc.description.references Kreps, J. A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., & Harper, J. F. (2002). Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress. Plant Physiology, 130(4), 2129-2141. doi:10.1104/pp.008532 es_ES
dc.description.references Dai, F., Huang, Y., Zhou, M., & Zhang, G. (2009). The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biologia Plantarum, 53(2), 257-262. doi:10.1007/s10535-009-0048-5 es_ES
dc.description.references Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., & Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89(4), 555-573. doi:10.1002/jsfa.3468 es_ES
dc.description.references Provart, N. J., Gil, P., Chen, W., Han, B., Chang, H.-S., Wang, X., & Zhu, T. (2003). Gene Expression Phenotypes of Arabidopsis Associated with Sensitivity to Low Temperatures. Plant Physiology, 132(2), 893-906. doi:10.1104/pp.103.021261 es_ES
dc.description.references Narsai, R., Ivanova, A., Ng, S., & Whelan, J. (2010). Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biology, 10(1), 56. doi:10.1186/1471-2229-10-56 es_ES
dc.description.references Medina, J., Catalá, R., & Salinas, J. (2011). The CBFs: Three arabidopsis transcription factors to cold acclimate. Plant Science, 180(1), 3-11. doi:10.1016/j.plantsci.2010.06.019 es_ES
dc.description.references Wisniewski, M., Norelli, J., Bassett, C., Artlip, T., & Macarisin, D. (2011). Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta, 233(5), 971-983. doi:10.1007/s00425-011-1358-3 es_ES
dc.description.references Feng, X.-M., Zhao, Q., Zhao, L.-L., Qiao, Y., Xie, X.-B., Li, H.-F., … Hao, Y.-J. (2012). The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biology, 12(1), 22. doi:10.1186/1471-2229-12-22 es_ES
dc.description.references Miura K, Shiba H, Ohta M, Kang SW, Sato A, <etal>et al</etal>.. (2012) <italic>SlICE1</italic> encoding a MYC-type transcription factor controls cold tolerance in tomato, <italic>Solanum lycopersicum</italic>. Plant Biotechnology advpub. es_ES
dc.description.references Huq, E., Tepperman, J. M., & Quail, P. H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 97(17), 9789-9794. doi:10.1073/pnas.170283997 es_ES
dc.description.references Takase, T., Nakazawa, M., Ishikawa, A., Manabe, K., & Matsui, M. (2003). DFL2, a New Member of the Arabidopsis GH3 Gene Family, is Involved in Red Light-Specific Hypocotyl Elongation. Plant and Cell Physiology, 44(10), 1071-1080. doi:10.1093/pcp/pcg130 es_ES
dc.description.references Johnson, E., Bradley, M., Harberd, N. P., & Whitelam, G. C. (1994). Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiology, 105(1), 141-149. doi:10.1104/pp.105.1.141 es_ES
dc.description.references Kim, D.-H., Kang, J.-G., Yang, S.-S., Chung, K.-S., Song, P.-S., & Park, C.-M. (2002). A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis. The Plant Cell, 14(12), 3043-3056. doi:10.1105/tpc.005306 es_ES
dc.description.references Kim, H., Kim, Y., Park, J., & Kim, J. (2002). Light signalling mediated by phytochrome plays an important role in cold‐induced gene expression through the C‐repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. The Plant Journal, 29(6), 693-704. doi:10.1046/j.1365-313x.2002.01249.x es_ES
dc.description.references Soitamo, A. J., Piippo, M., Allahverdiyeva, Y., Battchikova, N., & Aro, E.-M. (2008). Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biology, 8(1), 13. doi:10.1186/1471-2229-8-13 es_ES
dc.description.references Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108 es_ES
dc.description.references Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x es_ES
dc.description.references Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., … Hirayama, T. (2005). ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 140(1), 115-126. doi:10.1104/pp.105.070128 es_ES
dc.description.references Hugouvieux, V. (2002). Localization, Ion Channel Regulation, and Genetic Interactions during Abscisic Acid Signaling of the Nuclear mRNA Cap-Binding Protein, ABH1. PLANT PHYSIOLOGY, 130(3), 1276-1287. doi:10.1104/pp.009480 es_ES
dc.description.references Kariola, T., Brader, G., Helenius, E., Li, J., Heino, P., & Palva, E. T. (2006). EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Physiology, 142(4), 1559-1573. doi:10.1104/pp.106.086223 es_ES
dc.description.references Belin, C., Megies, C., Hauserová, E., & Lopez-Molina, L. (2009). Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling. The Plant Cell, 21(8), 2253-2268. doi:10.1105/tpc.109.067702 es_ES
dc.description.references Trainotti, L., Tadiello, A., & Casadoro, G. (2007). The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany, 58(12), 3299-3308. doi:10.1093/jxb/erm178 es_ES
dc.description.references Zhao, D., Shen, L., Fan, B., Yu, M., Zheng, Y., Lv, S., & Sheng, J. (2009). Ethylene and cold participate in the regulation ofLeCBF1gene expression in postharvest tomato fruits. FEBS Letters, 583(20), 3329-3334. doi:10.1016/j.febslet.2009.09.029 es_ES
dc.description.references Begheldo, M., Manganaris, G. A., Bonghi, C., & Tonutti, P. (2008). Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biology and Technology, 48(1), 84-91. doi:10.1016/j.postharvbio.2007.09.023 es_ES
dc.description.references Kelley, D. R., & Estelle, M. (2012). Ubiquitin-Mediated Control of Plant Hormone Signaling. Plant Physiology, 160(1), 47-55. doi:10.1104/pp.112.200527 es_ES
dc.description.references Lim, G.-H., Zhang, X., Chung, M.-S., Lee, D. J., Woo, Y.-M., Cheong, H.-S., & Kim, C. S. (2009). A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytologist, 185(1), 103-113. doi:10.1111/j.1469-8137.2009.03032.x es_ES
dc.description.references Han, S.-K., Sang, Y., Rodrigues, A., Wu, M.-F., Rodriguez, P. L., & Wagner, D. (2012). The SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Represses Abscisic Acid Responses in the Absence of the Stress Stimulus in Arabidopsis. The Plant Cell, 24(12), 4892-4906. doi:10.1105/tpc.112.105114 es_ES
dc.description.references Nakashima, K., Kiyosue, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. The Plant Journal, 12(4), 851-861. doi:10.1046/j.1365-313x.1997.12040851.x es_ES
dc.description.references Ueda, A., Li, P., Feng, Y., Vikram, M., Kim, S., Kang, C. H., … Koiwa, H. (2008). The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. Plant Molecular Biology, 67(6), 683-697. doi:10.1007/s11103-008-9348-y es_ES
dc.description.references Wang, Y., Liu, C., Li, K., Sun, F., Hu, H., Li, X., … Li, X. (2007). Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Molecular Biology, 64(6), 633-644. doi:10.1007/s11103-007-9182-7 es_ES
dc.description.references Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., … Park, C.-M. (2007). GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 282(13), 10036-10046. doi:10.1074/jbc.m610524200 es_ES
dc.description.references Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., & Caballero, J. L. (2011). The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology, 52(11), 1873-1903. doi:10.1093/pcp/pcr136 es_ES
dc.description.references Iriti, M., & Faoro, F. (2009). Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution. International Journal of Molecular Sciences, 10(8), 3371-3399. doi:10.3390/ijms10083371 es_ES
dc.description.references Vergne, E., Grand, X., Ballini, E., Chalvon, V., Saindrenan, P., Tharreau, D., … Morel, J.-B. (2010). Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae. BMC Plant Biology, 10(1), 206. doi:10.1186/1471-2229-10-206 es_ES
dc.description.references Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A., … Muday, G. K. (2001). Flavonoids Act as Negative Regulators of Auxin Transport in Vivo in Arabidopsis. Plant Physiology, 126(2), 524-535. doi:10.1104/pp.126.2.524 es_ES
dc.description.references Kitamura, S., Shikazono, N., & Tanaka, A. (2004). TRANSPARENT TESTA 19is involved in the accumulation of both anthocyanins and proanthocyanidins inArabidopsis. The Plant Journal, 37(1), 104-114. doi:10.1046/j.1365-313x.2003.01943.x es_ES
dc.description.references Kitamura, S., Matsuda, F., Tohge, T., Yonekura-Sakakibara, K., Yamazaki, M., Saito, K., & Narumi, I. (2010). Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. The Plant Journal, 62(4), 549-559. doi:10.1111/j.1365-313x.2010.04174.x es_ES
dc.description.references Zhao, J., & Dixon, R. A. (2010). The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science, 15(2), 72-80. doi:10.1016/j.tplants.2009.11.006 es_ES
dc.description.references Bindon, K. A., Bacic, A., & Kennedy, J. A. (2012). Tissue-Specific and Developmental Modifications of Grape Cell Walls Influence the Adsorption of Proanthocyanidins. Journal of Agricultural and Food Chemistry, 60(36), 9249-9260. doi:10.1021/jf301552t es_ES
dc.description.references Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in the tomato. Plant and Cell Physiology. es_ES
dc.description.references Rinaldi, M. A., Liu, J., Enders, T. A., Bartel, B., & Strader, L. C. (2012). A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Molecular Biology, 79(4-5), 359-373. doi:10.1007/s11103-012-9917-y es_ES
dc.description.references Hardenburg RE, Agriculture USDo, Watada AE, Science US, Administration E, et al. (1986) The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks: U.S. Department of Agriculture, Agricultural Research Service. es_ES
dc.description.references Ju, Z., Duan, Y., & Ju, Z. (2000). Leatheriness and mealiness of peaches in relation to fruit maturity and storage temperature. The Journal of Horticultural Science and Biotechnology, 75(1), 86-91. doi:10.1080/14620316.2000.11511205 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem