Mostrar el registro sencillo del ítem
dc.contributor.author | Carrasco Jiménez, José Luis | es_ES |
dc.contributor.author | Castelló Llopis, María José | es_ES |
dc.contributor.author | Naumann, Kai | es_ES |
dc.contributor.author | Lassowskat, Ines | es_ES |
dc.contributor.author | Navarrete Gomez, Maria Luisa | es_ES |
dc.contributor.author | Scheel, Dierk | es_ES |
dc.contributor.author | Vera Vera, Pablo | es_ES |
dc.date.accessioned | 2016-01-13T11:13:28Z | |
dc.date.available | 2016-01-13T11:13:28Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/59797 | |
dc.description.abstract | Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3l isoform (GRF6), a previously reported DBP1 interactor, and MAP kinase (MAPK) MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-offunction mutants showed altered response to infection by the potyvirus Plum pox virus (PPV), and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish MICINN (Grants BFU2009-09771, EUI2009-04009 to PV), Generalitat Valenciana (Prometeo2010/020 to PV) and the German DFG (SCHE 235/15-1 to DS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Arabidopsis thaliana DBP1 | es_ES |
dc.subject | Protein phosphatases | es_ES |
dc.subject | DNA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0090734 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-09771/ES/Mecanismos De Control De La Resistencia%2FSusceptibilidad A Patogenos En Arabidopsis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//EUI2009-04009/ES/IDENTIFICATION OF NEW PLANT SUSCEPTIBILITY FACTORS WHOSE MODIFICATION WOULD CONFER VIRUS RESISTANCE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F020/ES/Identificación de nuevos fármacos con potencia potencial uso biotecnológico en cultivos mediante un abordaje de genética química/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//SCHE 235%2F15-1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Carrasco Jiménez, JL.; Castelló Llopis, MJ.; Naumann, K.; Lassowskat, I.; Navarrete Gomez, ML.; Scheel, D.; Vera Vera, P. (2014). Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense. PLoS ONE. 9:1-10. https://doi.org/10.1371/journal.pone.0090734 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0090734 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.relation.senia | 288155 | es_ES |
dc.identifier.pmid | 24595057 | en_EN |
dc.identifier.pmcid | PMC3942490 | en_EN |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.description.references | Carrasco, J. L. (2003). A novel transcription factor involved in plant defense endowed with protein phosphatase activity. The EMBO Journal, 22(13), 3376-3384. doi:10.1093/emboj/cdg323 | es_ES |
dc.description.references | Carrasco, J. L., Ancillo, G., Castelló, M. J., & Vera, P. (2005). A Novel DNA-Binding Motif, Hallmark of a New Family of Plant Transcription Factors. Plant Physiology, 137(2), 602-606. doi:10.1104/pp.104.056002 | es_ES |
dc.description.references | Castelló, M. J., Carrasco, J. L., & Vera, P. (2010). DNA-Binding Protein Phosphatase AtDBP1 Mediates Susceptibility to Two Potyviruses in Arabidopsis. Plant Physiology, 153(4), 1521-1525. doi:10.1104/pp.110.158923 | es_ES |
dc.description.references | Castelló, M. J., Carrasco, J. L., Navarrete-Gómez, M., Daniel, J., Granot, D., & Vera, P. (2011). A Plant Small Polypeptide Is a Novel Component of DNA-Binding Protein Phosphatase 1-Mediated Resistance to Plum pox virus in Arabidopsis. Plant Physiology, 157(4), 2206-2215. doi:10.1104/pp.111.188953 | es_ES |
dc.description.references | Denison, F. C., Paul, A.-L., Zupanska, A. K., & Ferl, R. J. (2011). 14-3-3 proteins in plant physiology. Seminars in Cell & Developmental Biology, 22(7), 720-727. doi:10.1016/j.semcdb.2011.08.006 | es_ES |
dc.description.references | Carrasco, J. L., Castelló, M. J., & Vera, P. (2006). 14-3-3 Mediates Transcriptional Regulation by Modulating Nucleocytoplasmic Shuttling of Tobacco DNA-binding Protein Phosphatase-1. Journal of Biological Chemistry, 281(32), 22875-22881. doi:10.1074/jbc.m512611200 | es_ES |
dc.description.references | Colcombet, J., & Hirt, H. (2008). ArabidopsisMAPKs: a complex signalling network involved in multiple biological processes. Biochemical Journal, 413(2), 217-226. doi:10.1042/bj20080625 | es_ES |
dc.description.references | Kiegerl, S., Cardinale, F., Siligan, C., Gross, A., Baudouin, E., Liwosz, A., … Meskiene, I. (2000). SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress–Induced MAPK, SIMK. The Plant Cell, 12(11), 2247-2258. doi:10.1105/tpc.12.11.2247 | es_ES |
dc.description.references | CAMPS, M., NICHOLS, A., & ARKINSTALL, S. (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. The FASEB Journal, 14(1), 6-16. doi:10.1096/fasebj.14.1.6 | es_ES |
dc.description.references | Bethke, G., Pecher, P., Eschen-Lippold, L., Tsuda, K., Katagiri, F., Glazebrook, J., … Lee, J. (2012). Activation of the Arabidopsis thaliana Mitogen-Activated Protein Kinase MPK11 by the Flagellin-Derived Elicitor Peptide, flg22. Molecular Plant-Microbe Interactions, 25(4), 471-480. doi:10.1094/mpmi-11-11-0281 | es_ES |
dc.description.references | Wolschin, F., Wienkoop, S., & Weckwerth, W. (2005). Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). PROTEOMICS, 5(17), 4389-4397. doi:10.1002/pmic.200402049 | es_ES |
dc.description.references | Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., … Mundy, J. (2000). Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 103(7), 1111-1120. doi:10.1016/s0092-8674(00)00213-0 | es_ES |
dc.description.references | Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., … Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977-983. doi:10.1038/415977a | es_ES |
dc.description.references | Kosetsu, K., Matsunaga, S., Nakagami, H., Colcombet, J., Sasabe, M., Soyano, T., … Machida, Y. (2010). The MAP Kinase MPK4 Is Required for Cytokinesis in Arabidopsis thaliana. The Plant Cell, 22(11), 3778-3790. doi:10.1105/tpc.110.077164 | es_ES |
dc.description.references | Koroleva, O. A., Tomlinson, M. L., Leader, D., Shaw, P., & Doonan, J. H. (2004). High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. The Plant Journal, 41(1), 162-174. doi:10.1111/j.1365-313x.2004.02281.x | es_ES |
dc.description.references | Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. doi:10.1038/nrm2688 | es_ES |
dc.description.references | Gökirmak, T., Paul, A.-L., & Ferl, R. J. (2010). Plant phosphopeptide-binding proteins as signaling mediators. Current Opinion in Plant Biology, 13(5), 527-532. doi:10.1016/j.pbi.2010.06.001 | es_ES |
dc.description.references | Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186-192. doi:10.1016/s0955-0674(99)00075-7 | es_ES |
dc.description.references | Gupta, R., & Luan, S. (2003). Redox Control of Protein Tyrosine Phosphatases and Mitogen-Activated Protein Kinases in Plants. Plant Physiology, 132(3), 1149-1152. doi:10.1104/pp.103.020792 | es_ES |
dc.description.references | Katou, S., Karita, E., Yamakawa, H., Seo, S., Mitsuhara, I., Kuchitsu, K., & Ohashi, Y. (2005). Catalytic Activation of the Plant MAPK Phosphatase NtMKP1 by Its Physiological Substrate Salicylic Acid-induced Protein Kinase but Not by Calmodulins. Journal of Biological Chemistry, 280(47), 39569-39581. doi:10.1074/jbc.m508115200 | es_ES |
dc.description.references | Schweighofer, A., Kazanaviciute, V., Scheikl, E., Teige, M., Doczi, R., Hirt, H., … Meskiene, I. (2007). The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in Arabidopsis. The Plant Cell, 19(7), 2213-2224. doi:10.1105/tpc.106.049585 | es_ES |
dc.description.references | Ulm, R. (2001). Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes & Development, 15(6), 699-709. doi:10.1101/gad.192601 | es_ES |
dc.description.references | Yamakawa, H., Katou, S., Seo, S., Mitsuhara, I., Kamada, H., & Ohashi, Y. (2003). Plant MAPK Phosphatase Interacts with Calmodulins. Journal of Biological Chemistry, 279(2), 928-936. doi:10.1074/jbc.m310277200 | es_ES |
dc.description.references | Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Gerstein, M., Snyder, M., & Dinesh-Kumar, S. P. (2008). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes & Development, 23(1), 80-92. doi:10.1101/gad.1740009 | es_ES |
dc.description.references | Sato, T., Maekawa, S., Yasuda, S., Domeki, Y., Sueyoshi, K., Fujiwara, M., … Yamaguchi, J. (2011). Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. The Plant Journal, 68(1), 137-146. doi:10.1111/j.1365-313x.2011.04673.x | es_ES |
dc.description.references | Hunter, T. (2007). The Age of Crosstalk: Phosphorylation, Ubiquitination, and Beyond. Molecular Cell, 28(5), 730-738. doi:10.1016/j.molcel.2007.11.019 | es_ES |