- -

Multilocus ISSR markers reveal two major genetic groups in Spanish and South African populations of the grapevine fungal pathogen Cadophora luteo-olivacea

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multilocus ISSR markers reveal two major genetic groups in Spanish and South African populations of the grapevine fungal pathogen Cadophora luteo-olivacea

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gramaje Pérez, David es_ES
dc.contributor.author León Santana, Maela es_ES
dc.contributor.author Santana, Marcela es_ES
dc.contributor.author Crous, Pedro W. es_ES
dc.contributor.author Armengol Fortí, Josep es_ES
dc.date.accessioned 2016-01-13T12:46:54Z
dc.date.available 2016-01-13T12:46:54Z
dc.date.issued 2014-10
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/59824
dc.description.abstract Cadophora luteo-olivacea is a lesser-known fungal trunk pathogen of grapevine which has been recently isolated from vines showing decline symptoms in grape growing regions worldwide. In this study, 80 C. luteo-olivacea isolates (65 from Spain and 15 from South Africa) were studied. Inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 55 polymorphic loci from four ISSR primers selected from an initial screen of 13 ISSR primers. The ISSR markers revealed 40 multilocus genotypes (MLGs) in the global population. Minimum spanning network analysis showed that the MLGs from South Africa clustered around the most frequent genotype, while the genotypes from Spain were distributed all across the network. Principal component analysis and dendrograms based on genetic distance and bootstrapping identified two highly differentiated genetic clusters in the Spanish and South African C. luteo-olivacea populations, with no intermediate genotypes between these clusters. Movement within the Spanish provinces may have occurred repeatedly given the frequent retrieval of the same genotype in distant locations. The results obtained in this study provide new insights into the population genetic structure of C. luteo-olivacea in Spain and highlights the need to produce healthy and quality planting material in grapevine nurseries to avoid the spread of this fungus throughout different grape growing regions. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cadophora luteo-olivacea es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Multilocus ISSR markers reveal two major genetic groups in Spanish and South African populations of the grapevine fungal pathogen Cadophora luteo-olivacea es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0110417
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Gramaje Pérez, D.; León Santana, M.; Santana, M.; Crous, PW.; Armengol Fortí, J. (2014). Multilocus ISSR markers reveal two major genetic groups in Spanish and South African populations of the grapevine fungal pathogen Cadophora luteo-olivacea. PLoS ONE. 9(10):1-13. doi:10.1371/journal.pone.0110417 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0110417 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 280490 es_ES
dc.identifier.pmid 25310345 en_EN
dc.identifier.pmcid PMC4195744 en_EN
dc.description.references Unwin T (1996) Wine and the wine: An historical geography of viticulture and the wine trade. 2nd Ed., Routledge, London. 389. es_ES
dc.description.references Pearson RC, Goheen AC, eds (1988) Compendium of grape diseases. St Paul: APS Press. 128. es_ES
dc.description.references Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., … Fontaine, F. (2012). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243-265. doi:10.1111/j.1365-3059.2012.02674.x es_ES
dc.description.references Smart R (2013) Trunk diseases … a larger threat than phylloxera? Wine Viticult J July/August: 16–18. es_ES
dc.description.references Gramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025 es_ES
dc.description.references Held, B. W., Jurgens, J. A., Arenz, B. E., Duncan, S. M., Farrell, R. L., & Blanchette, R. A. (2005). Environmental factors influencing microbial growth inside the historic expedition huts of Ross Island, Antarctica. International Biodeterioration & Biodegradation, 55(1), 45-53. doi:10.1016/j.ibiod.2004.06.011 es_ES
dc.description.references Gonçalves, V. N., Vaz, A. B. M., Rosa, C. A., & Rosa, L. H. (2012). Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiology Ecology, 82(2), 459-471. doi:10.1111/j.1574-6941.2012.01424.x es_ES
dc.description.references Hujslová, M., Kubátová, A., Chudíčková, M., & Kolařík, M. (2009). Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycological Progress, 9(1), 1-15. doi:10.1007/s11557-009-0611-7 es_ES
dc.description.references Riccioni, L., Manning, M., Valvassori, M., Haegi, A., Casonato, S., & Spinelli, R. (2007). A NEW DISEASE: LEADER DIE-BACK IN ACTINIDIA CHINENSIS «HORT16A» IN ITALY. Acta Horticulturae, (753), 669-676. doi:10.17660/actahortic.2007.753.88 es_ES
dc.description.references Halleen, F., Crous, P. W., & Petrini, O. (2003). Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australasian Plant Pathology, 32(1), 47. doi:10.1071/ap02062 es_ES
dc.description.references Halleen, F., Mostert, L., & Crous, P. W. (2007). Pathogenicity testing of lesser-known vascular fungi of grapevines. Australasian Plant Pathology, 36(3), 277. doi:10.1071/ap07019 es_ES
dc.description.references Rooney-Latham S (2005) Etiology, Epidemiology and Pathogen Biology of Esca Disease of Grapevines in California. PhD dissertation, University of California, Davis, CA, USA. Publication No. AAT 3191148. es_ES
dc.description.references Úrbez-Torres, J. R., Haag, P., Bowen, P., & O’Gorman, D. T. (2014). Grapevine Trunk Diseases in British Columbia: Incidence and Characterization of the Fungal Pathogens Associated with Esca and Petri Diseases of Grapevine. Plant Disease, 98(4), 469-482. doi:10.1094/pdis-05-13-0523-re es_ES
dc.description.references Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021 es_ES
dc.description.references Agustí-Brisach, C., Gramaje, D., León, M., García-Jiménez, J., & Armengol, J. (2011). Evaluation of Vineyard Weeds as Potential Hosts of Black-Foot and Petri Disease Pathogens. Plant Disease, 95(7), 803-810. doi:10.1094/pdis-12-10-0888 es_ES
dc.description.references Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2012). Detection of black-foot and Petri disease pathogens in soils of grapevine nurseries and vineyards using bait plants. Plant and Soil, 364(1-2), 5-13. doi:10.1007/s11104-012-1333-1 es_ES
dc.description.references Gramaje, D., Alaniz, S., Abad-Campos, P., García-Jiménez, J., & Armengol, J. (2010). Effect of hot-water treatmentsin vitroon conidial germination and mycelial growth of grapevine trunk pathogens. Annals of Applied Biology, 156(2), 231-241. doi:10.1111/j.1744-7348.2009.00382.x es_ES
dc.description.references Burdon JJ (1993) Genetic variation in pathogen populations and its implications for adaptation to host resistance, p. 41–56. In T. Jacobs and J. E. Parlevliet (ed.), Durability of Disease Resistance. Kluwer, Dordrecht. es_ES
dc.description.references Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16-23. doi:10.1016/j.mycres.2008.07.002 es_ES
dc.description.references Armengol, J., Vicent, A., León, M., Berbegal, M., Abad-Campos, P., & García-Jiménez, J. (2010). Analysis of population structure ofRosellinia necatrixonCyperus esculentusby mycelial compatibility and inter-simple sequence repeats (ISSR). Plant Pathology, 59(1), 179-185. doi:10.1111/j.1365-3059.2009.02150.x es_ES
dc.description.references Rampersad, S. N. (2013). Genetic Structure of Colletotrichum gloeosporioides sensu lato Isolates Infecting Papaya Inferred by Multilocus ISSR Markers. Phytopathology, 103(2), 182-189. doi:10.1094/phyto-07-12-0160-r es_ES
dc.description.references Milgroom, M. G., & Fry, W. E. (1997). Contributions of Population Genetics to Plant Disease Epidemiology and Management. Advances in Botanical Research, 1-30. doi:10.1016/s0065-2296(08)60069-5 es_ES
dc.description.references BROWN, J. K. M. (1996). The choice of molecular marker methods for population genetic studies of plant pathogens. New Phytologist, 133(1), 183-195. doi:10.1111/j.1469-8137.1996.tb04353.x es_ES
dc.description.references Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. Pages 43–86 in: Plant Molecular Systematics II. D. E. Soltis, P. S. Soltis, and J. J. Doyle, eds. Kluwer Academic Press, Dordrecht, The Netherlands. es_ES
dc.description.references Potter, D., Gao, F., Aiello, G., Leslie, C., & McGranahan, G. (2002). Intersimple Sequence Repeat Markers for Fingerprinting and Determining Genetic Relationships of Walnut (Juglans regia) Cultivars. Journal of the American Society for Horticultural Science, 127(1), 75-81. doi:10.21273/jashs.127.1.75 es_ES
dc.description.references Aroca, Á., Gramaje, D., Armengol, J., García-Jiménez, J., & Raposo, R. (2009). Evaluation of the grapevine nursery propagation process as a source of Phaeoacremonium spp. and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain. European Journal of Plant Pathology, 126(2), 165-174. doi:10.1007/s10658-009-9530-3 es_ES
dc.description.references Dhingra OD, Sinclair JB (1995) Basic Plant Pathology Methods. 2nd Ed., CRC Press, USA. 434. es_ES
dc.description.references Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. doi:10.7717/peerj.281 es_ES
dc.description.references R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org/ es_ES
dc.description.references Jombart, T., Pontier, D., & Dufour, A.-B. (2009). Genetic markers in the playground of multivariate analysis. Heredity, 102(4), 330-341. doi:10.1038/hdy.2008.130 es_ES
dc.description.references Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129 es_ES
dc.description.references Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 es_ES
dc.description.references Suzuki, R., & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540-1542. doi:10.1093/bioinformatics/btl117 es_ES
dc.description.references Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1(1-2), 101-102. doi:10.1046/j.1471-8278.2000.00014.x es_ES
dc.description.references Pielou EC (1969) An Introduction to Mathematical Ecology. John Wiley, New York. es_ES
dc.description.references Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of Genotypic Diversity Data for Populations of Microorganisms. Phytopathology, 93(6), 738-746. doi:10.1094/phyto.2003.93.6.738 es_ES
dc.description.references Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, <etal>et al</etal>.. (2013) Vegan: community ecology package. R package version 2.0–7. Available at: http://vegan.r-forge.r-project.org/ Accessed August 23, 2014. es_ES
dc.description.references ARNAUD-HAOND, S., & BELKHIR, K. (2006). genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecology Notes, 7(1), 15-17. doi:10.1111/j.1471-8286.2006.01522.x es_ES
dc.description.references ARNAUD-HAOND, S., DUARTE, C. M., ALBERTO, F., & SERRÃO, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16(24), 5115-5139. doi:10.1111/j.1365-294x.2007.03535.x es_ES
dc.description.references Fincham JRS, Day PR (1963) Fungal Genetics. Blackwell Scientific Publication, Oxford. es_ES
dc.description.references Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 117693430500100. doi:10.1177/117693430500100003 es_ES
dc.description.references Gramaje, D., Armengol, J., Salazar, D., López-Cortés, I., & García-Jiménez, J. (2009). Effect of hot-water treatments above 50°C on grapevine viability and survival of Petri disease pathogens. Crop Protection, 28(3), 280-285. doi:10.1016/j.cropro.2008.11.002 es_ES
dc.description.references Anderson, J. B., & Kohn, L. M. (1995). Clonality in Soilborne, Plant-Pathogenic Fungi. Annual Review of Phytopathology, 33(1), 369-391. doi:10.1146/annurev.py.33.090195.002101 es_ES
dc.description.references Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences, 91(24), 11591-11595. doi:10.1073/pnas.91.24.11591 es_ES
dc.description.references GOSS, E. M., CARBONE, I., & GRÜNWALD, N. J. (2009). Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogenPhytophthora ramorum. Molecular Ecology, 18(6), 1161-1174. doi:10.1111/j.1365-294x.2009.04089.x es_ES
dc.description.references BAHRI, B., LECONTE, M., OUFFROUKH, A., DE VALLAVIEILLE-POPE, C., & ENJALBERT, J. (2009). Geographic limits of a clonal population of wheat yellow rust in the Mediterranean region. Molecular Ecology, 18(20), 4165-4179. doi:10.1111/j.1365-294x.2009.04267.x es_ES
dc.description.references Berbegal, M., Pérez-Sierra, A., Armengol, J., & Grünwald, N. J. (2013). Evidence for Multiple Introductions and Clonality in Spanish Populations ofFusarium circinatum. Phytopathology, 103(8), 851-861. doi:10.1094/phyto-11-12-0281-r es_ES
dc.description.references Comont, G., Corio-Costet, M.-F., Larignon, P., & Delmotte, F. (2010). AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. European Journal of Plant Pathology, 127(4), 451-464. doi:10.1007/s10658-010-9611-3 es_ES
dc.description.references Tibayrenc, M., Kjellberg, F., Arnaud, J., Oury, B., Breniere, S. F., Darde, M. L., & Ayala, F. J. (1991). Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proceedings of the National Academy of Sciences, 88(12), 5129-5133. doi:10.1073/pnas.88.12.5129 es_ES
dc.description.references Zhou, S., Smith, D. R., & Stanosz, G. R. (2001). Differentiation of Botryosphaeria species and related anamorphic fungi using Inter Simple or Short Sequence Repeat (ISSR) fingerprinting. Mycological Research, 105(8), 919-926. doi:10.1016/s0953-7562(08)61947-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem