- -

Modeling Response Variables in Taguchi Design Parameters Using CART and Random Forest Based Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling Response Variables in Taguchi Design Parameters Using CART and Random Forest Based Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villa M, Adriana es_ES
dc.contributor.author Carrión García, Andrés es_ES
dc.contributor.author San Matías Izquierdo, Susana es_ES
dc.date.accessioned 2016-01-13T16:34:01Z
dc.date.available 2016-01-13T16:34:01Z
dc.date.issued 2012-12
dc.identifier.issn 1450-7196
dc.identifier.uri http://hdl.handle.net/10251/59860
dc.description.abstract [EN] Taguchi parameter design is a quality approach to design better products and processes, less sensitive to changes of the environmental and productive conditions. Robustness against changes in factors affecting processes is the key concept. Some recent papers have used a two steps methodology to improve parameter design. The first step determines the objective function using Artificial Neural Networks (ANN) to predict the value of the response variable when factors are in some specific levels (different to those included in the experiments). The second step looks for the optimal parameter combination. Our proposal here is centered in improving the first of these two steps, and consists in the development of new systems to model the response variable, based in Classification and Regression Trees (CART) and in Random Forest (RF), as an alternative to ANN and with the aim of creating a more robust strategy. es_ES
dc.language Inglés es_ES
dc.publisher Research Center of Dependability and Quality Management es_ES
dc.relation.ispartof Communications in Dependability and Quality Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural networks (ANN) es_ES
dc.subject Classification and regression trees (CART) es_ES
dc.subject Random forests (RF) es_ES
dc.subject Taguchi experimental design es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Modeling Response Variables in Taguchi Design Parameters Using CART and Random Forest Based Systems es_ES
dc.type Artículo es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Villa M, A.; Carrión García, A.; San Matías Izquierdo, S. (2012). Modeling Response Variables in Taguchi Design Parameters Using CART and Random Forest Based Systems. Communications in Dependability and Quality Management. 15(4):5-15. http://hdl.handle.net/10251/59860 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 5 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 243461 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem