- -

Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sainz, Martha es_ES
dc.contributor.author Pérez-Rontomé, Carmen es_ES
dc.contributor.author Ramos, Javier es_ES
dc.contributor.author Mulet Salort, José Miguel es_ES
dc.contributor.author James, Euan K. es_ES
dc.contributor.author Bhattacharjee, Ujjal es_ES
dc.contributor.author Petrich, Jacob W. es_ES
dc.contributor.author Becana, Manuel es_ES
dc.date.accessioned 2016-01-14T10:02:57Z
dc.date.available 2016-01-14T10:02:57Z
dc.date.issued 2013-12
dc.identifier.issn 0960-7412
dc.identifier.uri http://hdl.handle.net/10251/59876
dc.description This is the accepted version of the following article: Sainz, M., Pérez-Rontomé, C., Ramos, J., Mulet, J. M., James, E. K., Bhattacharjee, U., Petrich, J. W. and Becana, M. (2013), Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. Plant J, 76: 875–887, which has been published in final form at http://dx.doi.org/10.1111/tpj.12340. es_ES
dc.description.abstract The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O2 and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and truncated (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O2 affinity of Glb1-1 (50 pM) was the highest known for any Hb, and the protein may function as an O2 scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response. es_ES
dc.description.sponsorship We are grateful to Ryan Sturms and Mark Hargrove (Department of Biochemistry and Molecular Biology, Iowa State University, Ames, IA) for help with stopped-flow measurements, and to Raul Arredondo-Peter (Laboratorio de Biofisica y Biologia Molecular, Universidad Autonoma del Estado de Morelos, Mexico) and two anonymous reviewers for helpful comments on the manuscript. Thanks are also due to Laura Calvo, Ana Castillo and Ana Alvarez for help with protein purification, nuclei isolation and HPLC-MS analysis, respectively. This work was funded by the Spanish Ministry of Economy and Competitiveness/Fondo Europeo de Desarrollo Regional (grant AGL2011-24524) and the Government of Aragon/Fondo Social Europeo (group A53). M. S. was supported by a pre-doctoral contract from Junta de Ampliacion de Estudios/Consejo Superior de Investigaciones Cientificas. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof The Plant Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lotus japonicus es_ES
dc.subject Plant hemoglobins es_ES
dc.subject Flavins es_ES
dc.subject Legume nodules es_ES
dc.subject Nitrosative stress es_ES
dc.subject Oxidative stress es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/tpj.12340
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-24524/ES/SEÑALIZACION POR ESPECIES REACTIVAS DE OXIGENO%2FNITROGENO Y ANTIOXIDANTES EN LA SIMBIOSIS FIJADORA DE NITROGENO RHIZOBIUM-LEGUMINOSA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sainz, M.; Pérez-Rontomé, C.; Ramos, J.; Mulet Salort, JM.; James, EK.; Bhattacharjee, U.; Petrich, JW.... (2013). Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. The Plant Journal. 76(5):875-887. https://doi.org/10.1111/tpj.12340 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/tpj.12340 es_ES
dc.description.upvformatpinicio 875 es_ES
dc.description.upvformatpfin 887 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 76 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 252959 es_ES
dc.identifier.eissn 1365-313X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Gobierno de Aragón es_ES
dc.description.references Angelo, M., Hausladen, A., Singel, D. J., & Stamler, J. S. (2008). Interactions of NO with Hemoglobin: From Microbes to Man. Globins and Other Nitric Oxide-Reactive Proteins, Part A, 131-168. doi:10.1016/s0076-6879(08)36008-x es_ES
dc.description.references Appleby, C. A. (1984). Leghemoglobin and Rhizobium Respiration. Annual Review of Plant Physiology, 35(1), 443-478. doi:10.1146/annurev.pp.35.060184.002303 es_ES
dc.description.references Baudouin, E. (2003). A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. Journal of Experimental Botany, 55(394), 43-47. doi:10.1093/jxb/erh020 es_ES
dc.description.references Becana, M., & Klucas, R. V. (1990). Enzymatic and nonenzymatic mechanisms for ferric leghemoglobin reduction in legume root nodules. Proceedings of the National Academy of Sciences, 87(18), 7295-7299. doi:10.1073/pnas.87.18.7295 es_ES
dc.description.references Becana, M., Matamoros, M. A., Udvardi, M., & Dalton, D. A. (2010). Recent insights into antioxidant defenses of legume root nodules. New Phytologist, 188(4), 960-976. doi:10.1111/j.1469-8137.2010.03512.x es_ES
dc.description.references Bruno, S., Faggiano, S., Spyrakis, F., Mozzarelli, A., Abbruzzetti, S., Grandi, E., … Dominici, P. (2007). The Reactivity with CO of AHb1 and AHb2 fromArabidopsisthalianais Controlled by the Distal HisE7 and Internal Hydrophobic Cavities. Journal of the American Chemical Society, 129(10), 2880-2889. doi:10.1021/ja066638d es_ES
dc.description.references Bustos-Sanmamed, P., Tovar-Méndez, A., Crespi, M., Sato, S., Tabata, S., & Becana, M. (2010). Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytologist, 189(3), 765-776. doi:10.1111/j.1469-8137.2010.03527.x es_ES
dc.description.references Bykova, N. V., Igamberdiev, A. U., Ens, W., & Hill, R. D. (2006). Identification of an intermolecular disulfide bond in barley hemoglobin. Biochemical and Biophysical Research Communications, 347(1), 301-309. doi:10.1016/j.bbrc.2006.06.091 es_ES
dc.description.references Cochemé, H. M., & Murphy, M. P. (2007). Complex I Is the Major Site of Mitochondrial Superoxide Production by Paraquat. Journal of Biological Chemistry, 283(4), 1786-1798. doi:10.1074/jbc.m708597200 es_ES
dc.description.references Dalton, D. A., Baird, L. M., Langeberg, L., Taugher, C. Y., Anyan, W. R., Vance, C. P., & Sarath, G. (1993). Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. Plant Physiology, 102(2), 481-489. doi:10.1104/pp.102.2.481 es_ES
dc.description.references DORDAS, C. (2003). Plant Haemoglobins, Nitric Oxide and Hypoxic Stress. Annals of Botany, 91(2), 173-178. doi:10.1093/aob/mcf115 es_ES
dc.description.references Duff, S. M. G., Wittenberg, J. B., & Hill, R. D. (1997). Expression, Purification, and Properties of Recombinant Barley (Hordeumsp.) Hemoglobin. Journal of Biological Chemistry, 272(27), 16746-16752. doi:10.1074/jbc.272.27.16746 es_ES
dc.description.references Folta, K. M., & Kaufman, L. S. (2000). Preparation of transcriptionally active nuclei from etiolated Arabidopsis thaliana. Plant Cell Reports, 19(5), 504-510. doi:10.1007/s002990050764 es_ES
dc.description.references Gardner, P. R. (2012). Hemoglobin: A Nitric-Oxide Dioxygenase. Scientifica, 2012, 1-34. doi:10.6064/2012/683729 es_ES
dc.description.references Daniel Gietz, R., & Woods, R. A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology, 87-96. doi:10.1016/s0076-6879(02)50957-5 es_ES
dc.description.references Gladwin, M. T., Ognibene, F. P., Pannell, L. K., Nichols, J. S., Pease-Fye, M. E., Shelhamer, J. H., & Schechter, A. N. (2000). Relative role of heme nitrosylation and beta -cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proceedings of the National Academy of Sciences, 97(18), 9943-9948. doi:10.1073/pnas.180155397 es_ES
dc.description.references Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007 es_ES
dc.description.references Hargrove, M. S. (2000). A Flash Photolysis Method to Characterize Hexacoordinate Hemoglobin Kinetics. Biophysical Journal, 79(5), 2733-2738. doi:10.1016/s0006-3495(00)76512-x es_ES
dc.description.references Hebelstrup, K. H., & Jensen, E. Ø. (2007). Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta, 227(4), 917-927. doi:10.1007/s00425-007-0667-z es_ES
dc.description.references Hebelstrup, K. H., Igamberdiev, A. U., & Hill, R. D. (2007). Metabolic effects of hemoglobin gene expression in plants. Gene, 398(1-2), 86-93. doi:10.1016/j.gene.2007.01.039 es_ES
dc.description.references Hebelstrup, K. H., Shah, J. K., & Igamberdiev, A. U. (2013). The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiologia Plantarum, 148(4), 457-469. doi:10.1111/ppl.12062 es_ES
dc.description.references Hill, R. D. (2012). Non-symbiotic haemoglobins—What’s happening beyond nitric oxide scavenging? AoB PLANTS, 2012. doi:10.1093/aobpla/pls004 es_ES
dc.description.references Hunt, P. W., Watts, R. A., Trevaskis, B., Llewelyn, D. J., Burnell, J., Dennis, E. S., & Peacock, W. J. (2001). Plant Molecular Biology, 47(5), 677-692. doi:10.1023/a:1012440926982 es_ES
dc.description.references Hunt, P. W., Klok, E. J., Trevaskis, B., Watts, R. A., Ellis, M. H., Peacock, W. J., & Dennis, E. S. (2002). Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(26), 17197-17202. doi:10.1073/pnas.212648799 es_ES
dc.description.references Igamberdiev, A. U., Bykova, N. V., & Hill, R. D. (2005). Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin. Planta, 223(5), 1033-1040. doi:10.1007/s00425-005-0146-3 es_ES
dc.description.references Igamberdiev, A. U., Bykova, N. V., Shah, J. K., & Hill, R. D. (2010). Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiologia Plantarum, 138(4), 393-404. doi:10.1111/j.1399-3054.2009.01314.x es_ES
dc.description.references Ioanitescu, A. I., Dewilde, S., Kiger, L., Marden, M. C., Moens, L., & Van Doorslaer, S. (2005). Characterization of Nonsymbiotic Tomato Hemoglobin. Biophysical Journal, 89(4), 2628-2639. doi:10.1529/biophysj.105.060582 es_ES
dc.description.references Kakar, S., Hoffman, F. G., Storz, J. F., Fabian, M., & Hargrove, M. S. (2010). Structure and reactivity of hexacoordinate hemoglobins. Biophysical Chemistry, 152(1-3), 1-14. doi:10.1016/j.bpc.2010.08.008 es_ES
dc.description.references Kim, D. Y., Hong, M. J., Lee, Y. J., Lee, M. B., & Seo, Y. W. (2012). Wheat truncated hemoglobin interacts with photosystem I PSK-I subunit and photosystem II subunit PsbS1. Biologia Plantarum, 57(2), 281-290. doi:10.1007/s10535-012-0268-y es_ES
dc.description.references Lee, H., Kim, H., & An, C. S. (2004). Cloning and expression analysis of 2-on-2 hemoglobin from soybean. Journal of Plant Biology, 47(2), 92-98. doi:10.1007/bf03030637 es_ES
dc.description.references Miyake, C., Schreiber, U., Hormann, H., Sano, S., & Kozi, A. (1998). The FAD-Enzyme Monodehydroascorbate Radical Reductase Mediates Photoproduction of Superoxide Radicals in Spinach Thylakoid Membranes. Plant and Cell Physiology, 39(8), 821-829. doi:10.1093/oxfordjournals.pcp.a029440 es_ES
dc.description.references Moran, J. F., Sun, Z., Sarath, G., Arredondo-Peter, R., James, E. K., Becana, M., & Klucas, R. V. (2002). Molecular Cloning, Functional Characterization, and Subcellular Localization of Soybean Nodule Dihydrolipoamide Reductase. Plant Physiology, 128(1), 300-313. doi:10.1104/pp.010505 es_ES
dc.description.references Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076 es_ES
dc.description.references Mur, L. A. J., Mandon, J., Persijn, S., Cristescu, S. M., Moshkov, I. E., Novikova, G. V., … Gupta, K. J. (2012). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5(0), pls052-pls052. doi:10.1093/aobpla/pls052 es_ES
dc.description.references Pankhurst, C. E., Schwinghamer, E. A., Thorne, S. W., & Bergersen, F. J. (1974). The Flavin Content of Clovers Relative to Symbiosis with a Riboflavin-requiring Mutant of Rhizobium trifoli. Plant Physiology, 53(2), 198-205. doi:10.1104/pp.53.2.198 es_ES
dc.description.references Perazzolli, M., Dominici, P., Romero-Puertas, M. C., Zago, E., Zeier, J., Sonoda, M., … Delledonne, M. (2004). Arabidopsis Nonsymbiotic Hemoglobin AHb1 Modulates Nitric Oxide Bioactivity. The Plant Cell, 16(10), 2785-2794. doi:10.1105/tpc.104.025379 es_ES
dc.description.references Qu, Z.-L., Wang, H.-Y., & Xia, G.-X. (2005). GhHb1: A nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1730(2), 103-113. doi:10.1016/j.bbaexp.2005.06.009 es_ES
dc.description.references Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013 es_ES
dc.description.references Rodríguez-Celma, J., Vázquez-Reina, S., Orduna, J., Abadía, A., Abadía, J., Álvarez-Fernández, A., & López-Millán, A.-F. (2011). Characterization of Flavins in Roots of Fe-Deficient Strategy I Plants, with a Focus on Medicago truncatula. Plant and Cell Physiology, 52(12), 2173-2189. doi:10.1093/pcp/pcr149 es_ES
dc.description.references Ross, E. J. H., Shearman, L., Mathiesen, M., Zhou, Y. J., Arredondo-Peter, R., Sarath, G., & Klucas, R. V. (2001). Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types. Protoplasma, 218(3-4), 125-133. doi:10.1007/bf01306602 es_ES
dc.description.references Rubio, M. C., Becana, M., Kanematsu, S., Ushimaru, T., & James, E. K. (2009). Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytologist, 183(2), 395-407. doi:10.1111/j.1469-8137.2009.02866.x es_ES
dc.description.references Seregélyes, C., Mustárdy, L., Ayaydin, F., Sass, L., Kovács, L., Endre, G., … Dudits, D. (2000). Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells1. FEBS Letters, 482(1-2), 125-130. doi:10.1016/s0014-5793(00)02049-4 es_ES
dc.description.references Smagghe, B. J., Blervacq, A.-S., Blassiau, C., Decottignies, J.-P., Jacquot, J.-P., Hargrove, M. S., & Hilbert, J.-L. (2007). Immunolocalization of Non-Symbiotic Hemoglobins During Somatic Embryogenesis in Chicory. Plant Signaling & Behavior, 2(1), 43-49. doi:10.4161/psb.2.1.3812 es_ES
dc.description.references Smagghe, B. J., Hoy, J. A., Percifield, R., Kundu, S., Hargrove, M. S., Sarath, G., … Appleby, C. A. (2009). Review: Correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers, 91(12), 1083-1096. doi:10.1002/bip.21256 es_ES
dc.description.references Spyrakis, F., Bruno, S., Bidon-Chanal, A., Luque, F. J., Abbruzzetti, S., Viappiani, C., … Mozzarelli, A. (2011). Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life, 63(5), 355-362. doi:10.1002/iub.470 es_ES
dc.description.references Sturms, R., Kakar, S., Trent, J., & Hargrove, M. S. (2010). TremaandParasponiaHemoglobins Reveal Convergent Evolution of Oxygen Transport in Plants. Biochemistry, 49(19), 4085-4093. doi:10.1021/bi1002844 es_ES
dc.description.references Taylor, E. R., Nie, X. Z., MacGregor, A. W., & Hill, R. D. (1994). A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 24(6), 853-862. doi:10.1007/bf00014440 es_ES
dc.description.references Trent, J. T., Watts, R. A., & Hargrove, M. S. (2001). Human Neuroglobin, a Hexacoordinate Hemoglobin That Reversibly Binds Oxygen. Journal of Biological Chemistry, 276(32), 30106-30110. doi:10.1074/jbc.c100300200 es_ES
dc.description.references Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., … Peacock, W. J. (1997). Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences, 94(22), 12230-12234. doi:10.1073/pnas.94.22.12230 es_ES
dc.description.references Uchiumi, T., Shimoda, Y., Tsuruta, T., Mukoyoshi, Y., Suzuki, A., Senoo, K., … Abe, M. (2002). Expression of Symbiotic and Nonsymbiotic Globin Genes Responding to Microsymbionts on Lotus japonicus. Plant and Cell Physiology, 43(11), 1351-1358. doi:10.1093/pcp/pcf165 es_ES
dc.description.references Vieweg, M. F., Hohnjec, N., & K�ster, H. (2004). Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta, 220(5), 757-766. doi:10.1007/s00425-004-1397-0 es_ES
dc.description.references Vigeolas, H., Hühn, D., & Geigenberger, P. (2011). Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants. Plant Physiology, 155(3), 1435-1444. doi:10.1104/pp.110.166462 es_ES
dc.description.references Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Guertin, M., Gough, J., … Vanfleteren, J. R. (2005). Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proceedings of the National Academy of Sciences, 102(32), 11385-11389. doi:10.1073/pnas.0502103102 es_ES
dc.description.references Wang, Y., Elhiti, M., Hebelstrup, K. H., Hill, R. D., & Stasolla, C. (2011). Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiology and Biochemistry, 49(10), 1108-1116. doi:10.1016/j.plaphy.2011.06.005 es_ES
dc.description.references Watts, R. A., Hunt, P. W., Hvitved, A. N., Hargrove, M. S., Peacock, W. J., & Dennis, E. S. (2001). A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proceedings of the National Academy of Sciences, 98(18), 10119-10124. doi:10.1073/pnas.191349198 es_ES
dc.description.references Weber, R. E., & Vinogradov, S. N. (2001). Nonvertebrate Hemoglobins: Functions and Molecular Adaptations. Physiological Reviews, 81(2), 569-628. doi:10.1152/physrev.2001.81.2.569 es_ES
dc.description.references Zhang, L., Onda, K., Imai, R., Fukuda, R., Horiuchi, H., & Ohta, A. (2003). Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 307(2), 308-314. doi:10.1016/s0006-291x(03)01168-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem