- -

Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mitsuuchi Tashima, Mauro es_ES
dc.contributor.author Soriano Martínez, Lourdes es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Cheeseman, C. R. es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2016-01-15T11:11:39Z
dc.date.available 2016-01-15T11:11:39Z
dc.date.issued 2012-09
dc.identifier.issn 2165-0373
dc.identifier.uri http://hdl.handle.net/10251/59917
dc.description.abstract The properties and microstructure of alkali-activated (AA) vitreous calcium aluminosilicate (VCAS) are presented in this paper. VCAS is manufactured from a by-product of the glass fiber industry and has been activated using NaOH and KOH solutions. The microstructure and mechanical properties of AA VCAS pastes and mortars are reported. The results show that depending on the type and concentration of hydroxide solution used, mortar samples with compressive strengths up to 77 MPa can be formed after curing for three days at 65 °C. The research demonstrates the potential of VCAS to produce AA cements and the importance of alkali type and concentration in optimizing properties and microstructure. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Sustainable Cement-Based Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alkali-activated binder es_ES
dc.subject Vitreous calcium aluminosilicate es_ES
dc.subject VCAS es_ES
dc.subject Alkali concentration es_ES
dc.subject Microstructure es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/21650373.2012.742610
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Mitsuuchi Tashima, M.; Soriano Martinez, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Cheeseman, CR.; Paya Bernabeu, JJ. (2012). Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials. 1(3):83-93. doi:10.1080/21650373.2012.742610 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/21650373.2012.742610 es_ES
dc.description.upvformatpinicio 83 es_ES
dc.description.upvformatpfin 93 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 233091 es_ES
dc.description.references Mahasenan N, Smith S, Humphreys K. The cement industry and global climate change: current and potential future cement industry CO2emissions. Greenhouse Gas Control Technologies – 6th International Conference. Oxford: Pergamon; 2003. p. 995–1000. es_ES
dc.description.references Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41(7), 642-650. doi:10.1016/j.cemconres.2011.03.019 es_ES
dc.description.references WBCSD – World Business Council for Sustainable Development. Cement industry energy and CO2performance – Getting numbers right. Edited by WBCSD, Geneva-Switzerland (ISBN 978-3-940388-48-3). 2009. es_ES
dc.description.references Shi, C., Jiménez, A. F., & Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), 750-763. doi:10.1016/j.cemconres.2011.03.016 es_ES
dc.description.references Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2006). Geopolymer technology: the current state of the art. Journal of Materials Science, 42(9), 2917-2933. doi:10.1007/s10853-006-0637-z es_ES
dc.description.references Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 35(6), 1204-1209. doi:10.1016/j.cemconres.2004.08.021 es_ES
dc.description.references Hossain, A. B., Shirazi, S. A., Persun, J., & Neithalath, N. (2008). Properties of Concrete Containing Vitreous Calcium Aluminosilicate Pozzolan. Transportation Research Record: Journal of the Transportation Research Board, 2070(1), 32-38. doi:10.3141/2070-05 es_ES
dc.description.references Neithalath, N., Persun, J., & Hossain, A. (2009). Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cement and Concrete Research, 39(6), 473-481. doi:10.1016/j.cemconres.2009.03.006 es_ES
dc.description.references Tashima MM, Soriano L, Borrachero MV, Monzó J, Payá J. Effect of curing time on the microstructure and mechanical strength development of alkali activated nbinders based on vitreous calcium aluminosilicate (VCAS). Bull. Mater. Sci. in press. es_ES
dc.description.references Hemmings RT, Nelson RD, Graves PL, Cornelius BJ. White pozzolan composition and blended cements containing same. Patent US6776838. 2004. es_ES
dc.description.references Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2005). Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chemistry of Materials, 17(12), 3075-3085. doi:10.1021/cm050230i es_ES
dc.description.references Criado, M., Fernández-Jiménez, A., de la Torre, A. G., Aranda, M. A. G., & Palomo, A. (2007). An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cement and Concrete Research, 37(5), 671-679. doi:10.1016/j.cemconres.2007.01.013 es_ES
dc.description.references Rees, C. A., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmuir, 23(17), 9076-9082. doi:10.1021/la701185g es_ES
dc.description.references Lee, W. K. W., & van Deventer, J. S. J. (2003). Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates. Langmuir, 19(21), 8726-8734. doi:10.1021/la026127e es_ES
dc.description.references García-Lodeiro, I., Fernández-Jiménez, A., Blanco, M. T., & Palomo, A. (2007). FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. Journal of Sol-Gel Science and Technology, 45(1), 63-72. doi:10.1007/s10971-007-1643-6 es_ES
dc.description.references Barbosa VFF. Sintese e caracterização de polissialatos (Synthesis and characterization of polysialates) [PhD thesis] (in Portuguese). Instituto Militar de Engenharia. Rio de Janeiro - Brazil. 190 p. 1999. es_ES
dc.description.references Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., Gordillo, M., & Provis, J. L. (2011). Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 46(16), 5477-5486. doi:10.1007/s10853-011-5490-z es_ES
dc.description.references Boccaccini, A. R., Bücker, M., Bossert, J., & Marszalek, K. (1997). Glass matrix composites from coal flyash and waste glass. Waste Management, 17(1), 39-45. doi:10.1016/s0956-053x(97)00035-4 es_ES
dc.description.references Kourti, I., Rani, D. A., Deegan, D., Boccaccini, A. R., & Cheeseman, C. R. (2010). Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 176(1-3), 704-709. doi:10.1016/j.jhazmat.2009.11.089 es_ES
dc.description.references Lampris, C., Lupo, R., & Cheeseman, C. R. (2009). Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Management, 29(1), 368-373. doi:10.1016/j.wasman.2008.04.007 es_ES
dc.description.references Wu, H.-C., & Sun, P. (2007). New building materials from fly ash-based lightweight inorganic polymer. Construction and Building Materials, 21(1), 211-217. doi:10.1016/j.conbuildmat.2005.06.052 es_ES
dc.description.references Kourti, I., Amutha Rani, D., Boccaccini, A. R., & Cheeseman, C. R. (2011). Geopolymers from DC Plasma–Treated Air Pollution Control Residues, Metakaolin, and Granulated Blast Furnace Slag. Journal of Materials in Civil Engineering, 23(6), 735-740. doi:10.1061/(asce)mt.1943-5533.0000170 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem