Mostrar el registro sencillo del ítem
dc.contributor.author | Mondragón Martínez, Laura | es_ES |
dc.contributor.author | Mas Font, Nuria | es_ES |
dc.contributor.author | Ferragud, Vicente | es_ES |
dc.contributor.author | de la Torre, Cristina | es_ES |
dc.contributor.author | Agostini, Alessandro | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Amoros del Toro, Pedro Jose | es_ES |
dc.contributor.author | Pérez Payá, Enrique | es_ES |
dc.contributor.author | Orzáez Calatayud, Mar | es_ES |
dc.date.accessioned | 2016-01-21T09:31:16Z | |
dc.date.issued | 2014-04-25 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/60096 | |
dc.description.abstract | The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM-41 nanoparticles functionalized on the outer surface with polymer epsilon-poly-L-lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)(3)](2+). An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate-functionalized MCM-41 nanoparticles with the lysine amino groups located on the epsilon-poly-L-lysine backbone (solid Ru-rLys-S1). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl-functionalized MCM-41 nanoparticles (solid Ru-tLys-S1). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer epsilon-poly-L-lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer's amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme-controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug-delivery systems was tested by preparing the corresponding epsilon-poly-L-lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT-rLys-S1 and CPT-tLys-S1. Cellular uptake and cell-death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated. | es_ES |
dc.description.sponsorship | We thank the Spanish Government (Project MAT2012-38429-C04, CTQ2007-64735-AR07 and SAF2010-15512) and the Generalitat Valenciana (Project PROMETEO/2009/016) for support. L.M. and A.A. thank the Generalitat Valenciana for their postdoctoral contract VALI+D and Santiago Grisolia PhD fellowship, respectively. N.M. thanks The Spanish Ministry of Science and Innovation for her FPI fellowship. C.T. thanks the Universitat Politecnica de Valencia for her PhD fellowship. M.O. thanks the CIPF for her postdoctoral fellowship. We thank the confocal microscopy service, Alberto Hernandez and EvaMaria LaFuente from CIPF for their technical support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | anchoring strategy | es_ES |
dc.subject | intracellular release | es_ES |
dc.subject | mesoporous materials | es_ES |
dc.subject | nanoparticles | es_ES |
dc.subject | poly-L-lysine | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with e-Poly-l-lysine | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201400148 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTQ2007-64735/ES/ESTRATEGIAS PARA EL DESARROLLO DE MICROSISTEMAS ANALITICOS DE BARRIDO BASADOS EN RECEPTORES BIOMOLECULARES Y SU APLICACION A LAS CIENCIAS DE LA VIDA/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-04/ES/DESARROLLO DE NUEVOS SISTEMAS DE DETECCION Y ACCION BASADOS EN TECNOLOGIAS ELECTRONICAS Y MICROELECTRONICAS PARA SU APLICACION EN SISTEMAS DE LIBERACION Y DETECCION DE GASES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.description.bibliographicCitation | Mondragón Martínez, L.; Mas Font, N.; Ferragud, V.; De La Torre, C.; Agostini, A.; Martínez Mañez, R.; Sancenón Galarza, F.... (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with e-Poly-l-lysine. Chemistry - A European Journal. 20(18):5271-5281. https://doi.org/10.1002/chem.201400148 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/chem.201400148 | es_ES |
dc.description.upvformatpinicio | 5271 | es_ES |
dc.description.upvformatpfin | 5281 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.senia | 276587 | es_ES |
dc.identifier.eissn | 1521-3765 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Centro de Investigación Príncipe Felipe | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Ge, Z., & Liu, S. (2013). Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chemical Society Reviews, 42(17), 7289. doi:10.1039/c3cs60048c | es_ES |
dc.description.references | Farokhzad, O. C., & Langer, R. (2009). Impact of Nanotechnology on Drug Delivery. ACS Nano, 3(1), 16-20. doi:10.1021/nn900002m | es_ES |
dc.description.references | Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002 | es_ES |
dc.description.references | Zhang, X.-X., Eden, H. S., & Chen, X. (2012). Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. Journal of Controlled Release, 159(1), 2-13. doi:10.1016/j.jconrel.2011.10.023 | es_ES |
dc.description.references | He, Q., & Shi, J. (2013). MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 26(3), 391-411. doi:10.1002/adma.201303123 | es_ES |
dc.description.references | Taylor-Pashow, K. M. L., Della Rocca, J., Huxford, R. C., & Lin, W. (2010). Hybrid nanomaterials for biomedical applications. Chemical Communications, 46(32), 5832. doi:10.1039/c002073g | es_ES |
dc.description.references | Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d | es_ES |
dc.description.references | Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g | es_ES |
dc.description.references | Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomater. Sci., 1(2), 114-134. doi:10.1039/c2bm00085g | es_ES |
dc.description.references | He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 21(16), 5845. doi:10.1039/c0jm03851b | es_ES |
dc.description.references | Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 | es_ES |
dc.description.references | Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m | es_ES |
dc.description.references | Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751 | es_ES |
dc.description.references | Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751 | es_ES |
dc.description.references | Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., & Hill, J. P. (2012). Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 85(1), 1-32. doi:10.1246/bcsj.20110162 | es_ES |
dc.description.references | Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 | es_ES |
dc.description.references | Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 | es_ES |
dc.description.references | Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 | es_ES |
dc.description.references | Cotí, K. K., Belowich, M. E., Liong, M., Ambrogio, M. W., Lau, Y. A., Khatib, H. A., … Stoddart, J. F. (2009). Mechanised nanoparticles for drug delivery. Nanoscale, 1(1), 16. doi:10.1039/b9nr00162j | es_ES |
dc.description.references | Johansson, E., Choi, E., Angelos, S., Liong, M., & Zink, J. I. (2007). Light-activated functional mesostructured silica. Journal of Sol-Gel Science and Technology, 46(3), 313-322. doi:10.1007/s10971-007-1661-4 | es_ES |
dc.description.references | Lin, Q., Huang, Q., Li, C., Bao, C., Liu, Z., Li, F., & Zhu, L. (2010). Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. Journal of the American Chemical Society, 132(31), 10645-10647. doi:10.1021/ja103415t | es_ES |
dc.description.references | Lai, J., Mu, X., Xu, Y., Wu, X., Wu, C., Li, C., … Zhao, Y. (2010). Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles. Chemical Communications, 46(39), 7370. doi:10.1039/c0cc02914a | es_ES |
dc.description.references | Agostini, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., Soto, J., & Amorós, P. (2012). A Photoactivated Molecular Gate. Chemistry - A European Journal, 18(39), 12218-12221. doi:10.1002/chem.201201127 | es_ES |
dc.description.references | Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u | es_ES |
dc.description.references | Mortera, R., Vivero-Escoto, J., Slowing, I. I., Garrone, E., Onida, B., & Lin, V. S.-Y. (2009). Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. Chemical Communications, (22), 3219. doi:10.1039/b900559e | es_ES |
dc.description.references | Casasús, R., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J. V., Soto, J., Villaescusa, L. A., … Latorre, J. (2004). Toward the Development of Ionically Controlled Nanoscopic Molecular Gates. Journal of the American Chemical Society, 126(28), 8612-8613. doi:10.1021/ja048095i | es_ES |
dc.description.references | Cauda, V., Argyo, C., Schlossbauer, A., & Bein, T. (2010). Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates. Journal of Materials Chemistry, 20(21), 4305. doi:10.1039/b918590a | es_ES |
dc.description.references | Angelos, S., Yang, Y.-W., Patel, K., Stoddart, J. F., & Zink, J. I. (2008). pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angewandte Chemie, 120(12), 2254-2258. doi:10.1002/ange.200705211 | es_ES |
dc.description.references | Angelos, S., Yang, Y.-W., Patel, K., Stoddart, J. F., & Zink, J. I. (2008). pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes. Angewandte Chemie International Edition, 47(12), 2222-2226. doi:10.1002/anie.200705211 | es_ES |
dc.description.references | Meng, H., Xue, M., Xia, T., Zhao, Y.-L., Tamanoi, F., Stoddart, J. F., … Nel, A. E. (2010). Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. doi:10.1021/ja104501a | es_ES |
dc.description.references | Liu, J., & Du, X. (2010). pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. Journal of Materials Chemistry, 20(18), 3642. doi:10.1039/b915510d | es_ES |
dc.description.references | Guo, W., Wang, J., Lee, S.-J., Dong, F., Park, S. S., & Ha, C.-S. (2010). A General pH-Responsive Supramolecular Nanovalve Based on Mesoporous Organosilica Hollow Nanospheres. Chemistry - A European Journal, 16(29), 8641-8646. doi:10.1002/chem.201000980 | es_ES |
dc.description.references | Popat, A., Liu, J., Lu, G. Q. (Max), & Qiao, S. Z. (2012). A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. Journal of Materials Chemistry, 22(22), 11173. doi:10.1039/c2jm30501a | es_ES |
dc.description.references | Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., & Li, Y. (2005). Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie, 117(32), 5213-5217. doi:10.1002/ange.200501500 | es_ES |
dc.description.references | Zhu, Y., Shi, J., Shen, W., Dong, X., Feng, J., Ruan, M., & Li, Y. (2005). Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure. Angewandte Chemie International Edition, 44(32), 5083-5087. doi:10.1002/anie.200501500 | es_ES |
dc.description.references | He, Q., Gao, Y., Zhang, L., Zhang, Z., Gao, F., Ji, X., … Shi, J. (2011). A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 32(30), 7711-7720. doi:10.1016/j.biomaterials.2011.06.066 | es_ES |
dc.description.references | Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d | es_ES |
dc.description.references | Liu, C., Guo, J., Yang, W., Hu, J., Wang, C., & Fu, S. (2009). Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. Journal of Materials Chemistry, 19(27), 4764. doi:10.1039/b902985k | es_ES |
dc.description.references | Thomas, C. R., Ferris, D. P., Lee, J.-H., Choi, E., Cho, M. H., Kim, E. S., … Zink, J. I. (2010). Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles. Journal of the American Chemical Society, 132(31), 10623-10625. doi:10.1021/ja1022267 | es_ES |
dc.description.references | Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 123(47), 11368-11371. doi:10.1002/ange.201102756 | es_ES |
dc.description.references | Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 | es_ES |
dc.description.references | Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k | es_ES |
dc.description.references | Mas, N., Galiana, I., Mondragón, L., Aznar, E., Climent, E., Cabedo, N., … Amorós, P. (2013). Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 19(34), 11167-11171. doi:10.1002/chem.201302170 | es_ES |
dc.description.references | Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten Materialien am Beispiel vonMycoplasma. Angewandte Chemie, 125(34), 9106-9110. doi:10.1002/ange.201302954 | es_ES |
dc.description.references | Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954 | es_ES |
dc.description.references | Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 | es_ES |
dc.description.references | Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818 | es_ES |
dc.description.references | Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818 | es_ES |
dc.description.references | Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085 | es_ES |
dc.description.references | Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 | es_ES |
dc.description.references | Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d | es_ES |
dc.description.references | Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439 | es_ES |
dc.description.references | Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie, 123(9), 2186-2188. doi:10.1002/ange.201004133 | es_ES |
dc.description.references | Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133 | es_ES |
dc.description.references | Ariga, K., Ji, Q., Mori, T., Naito, M., Yamauchi, Y., Abe, H., & Hill, J. P. (2013). Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 42(15), 6322. doi:10.1039/c2cs35475f | es_ES |
dc.description.references | Lee, S. H., Kim, J. H., & Park, C. B. (2013). Coupling Photocatalysis and Redox Biocatalysis Toward Biocatalyzed Artificial Photosynthesis. Chemistry - A European Journal, 19(14), 4392-4406. doi:10.1002/chem.201204385 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Yan, B., Kai, Q., & Wang, X.-L. (2011). Photofunctional Eu3+/Tb3+ hybrid material with inorganic silica covalently linking polymer chain through their double functionalization. Inorganica Chimica Acta, 376(1), 302-309. doi:10.1016/j.ica.2011.06.036 | es_ES |
dc.description.references | Zhang, K., Wu, W., Guo, K., Chen, J., & Zhang, P. (2010). Synthesis of Temperature-Responsive Poly(N-isopropyl acrylamide)/Poly(methyl methacrylate)/Silica Hybrid Capsules from Inverse Pickering Emulsion Polymerization and Their Application in Controlled Drug Release. Langmuir, 26(11), 7971-7980. doi:10.1021/la904841m | es_ES |
dc.description.references | Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165 | es_ES |
dc.description.references | Fu, Q., Rama Rao, G. V., Ward, T. L., Lu, Y., & Lopez, G. P. (2007). Thermoresponsive Transport through Ordered Mesoporous Silica/PNIPAAm Copolymer Membranes and Microspheres†. Langmuir, 23(1), 170-174. doi:10.1021/la062770f | es_ES |
dc.description.references | You, Y.-Z., Kalebaila, K. K., Brock, S. L., & Oupický, D. (2008). Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles. Chemistry of Materials, 20(10), 3354-3359. doi:10.1021/cm703363w | es_ES |
dc.description.references | Zhou, Z., Zhu, S., & Zhang, D. (2007). Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of Materials Chemistry, 17(23), 2428. doi:10.1039/b618834f | es_ES |
dc.description.references | Zhu, S., Zhou, Z., Zhang, D., Jin, C., & Li, Z. (2007). Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch. Microporous and Mesoporous Materials, 106(1-3), 56-61. doi:10.1016/j.micromeso.2007.02.027 | es_ES |
dc.description.references | Zhu, Y., Kaskel, S., Ikoma, T., & Hanagata, N. (2009). Magnetic SBA-15/poly(N-isopropylacrylamide) composite: Preparation, characterization and temperature-responsive drug release property. Microporous and Mesoporous Materials, 123(1-3), 107-112. doi:10.1016/j.micromeso.2009.03.031 | es_ES |
dc.description.references | Copello, G. J., Mebert, A. M., Raineri, M., Pesenti, M. P., & Diaz, L. E. (2011). Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method. Journal of Hazardous Materials, 186(1), 932-939. doi:10.1016/j.jhazmat.2010.11.097 | es_ES |
dc.description.references | Liu, R., Zhao, X., Wu, T., & Feng, P. (2008). Tunable Redox-Responsive Hybrid Nanogated Ensembles. Journal of the American Chemical Society, 130(44), 14418-14419. doi:10.1021/ja8060886 | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Javakhishvili, I., Mas, N., de la Torre, C., Martínez-Máñez, R., … Amorós, P. (2012). Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 18(41), 13068-13078. doi:10.1002/chem.201200787 | es_ES |
dc.description.references | SHIMA, S., & SAKAI, H. (1977). Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 41(9), 1807-1809. doi:10.1271/bbb1961.41.1807 | es_ES |
dc.description.references | Zhou, C., Li, P., Qi, X., Sharif, A. R. M., Poon, Y. F., Cao, Y., … Chan-Park, M. B. (2011). A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials, 32(11), 2704-2712. doi:10.1016/j.biomaterials.2010.12.040 | es_ES |
dc.description.references | SHIMA, S., MATSUOKA, H., IWAMOTO, T., & SAKAI, H. (1984). Antimicrobial action of .EPSILON.-poly-L-lysine. The Journal of Antibiotics, 37(11), 1449-1455. doi:10.7164/antibiotics.37.1449 | es_ES |
dc.description.references | SHIH, I., SHEN, M., & VAN, Y. (2006). Microbial synthesis of poly(ε-lysine) and its various applications. Bioresource Technology, 97(9), 1148-1159. doi:10.1016/j.biortech.2004.08.012 | es_ES |
dc.description.references | Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 | es_ES |
dc.description.references | Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). Angewandte Chemie, 114(14), 2708-2711. doi:10.1002/1521-3757(20020715)114:14<2708::aid-ange2708>3.0.co;2-0 | es_ES |
dc.description.references | Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 | es_ES |
dc.description.references | Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen. Angewandte Chemie, 113(11), 2056-2075. doi:10.1002/1521-3757(20010601)113:11<2056::aid-ange2056>3.0.co;2-w | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 | es_ES |
dc.description.references | Huisgen, R. (1963). 1.3-Dipolare Cycloadditionen Rückschau und Ausblick. Angewandte Chemie, 75(13), 604-637. doi:10.1002/ange.19630751304 | es_ES |
dc.description.references | Huisgen, R. (1963). 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English, 2(10), 565-598. doi:10.1002/anie.196305651 | es_ES |
dc.description.references | Kaiser, E., Colescott, R. L., Bossinger, C. D., & Cook, P. I. (1970). Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Analytical Biochemistry, 34(2), 595-598. doi:10.1016/0003-2697(70)90146-6 | es_ES |
dc.description.references | Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 | es_ES |
dc.description.references | Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 | es_ES |
dc.description.references | Felix, F., Ferguson, J., Guedel, H. U., & Ludi, A. (1980). The electronic spectrum of tris(2,2’-bipyridine)ruthenium(2+). Journal of the American Chemical Society, 102(12), 4096-4102. doi:10.1021/ja00532a019 | es_ES |
dc.description.references | Lytle, F. E., & Hercules, D. M. (1969). Luminescence of tris(2,2’-bipyridine)ruthenium(II) dichloride. Journal of the American Chemical Society, 91(2), 253-257. doi:10.1021/ja01030a006 | es_ES |
dc.description.references | Rosenholm, J. M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J. E., Sahlgren, C., & Lindén, M. (2008). Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. ACS Nano, 3(1), 197-206. doi:10.1021/nn800781r | es_ES |
dc.description.references | Iversen, T.-G., Skotland, T., & Sandvig, K. (2011). Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 6(2), 176-185. doi:10.1016/j.nantod.2011.02.003 | es_ES |
dc.description.references | Farabegoli, F., Govoni, M., & Novello, F. (1992). Effects of camptothecin, an inhibitor of DNA topoisomerase I on ribosomal gene structure and function in TG cells. Biology of the Cell, 74(3), 281-286. doi:10.1016/0248-4900(92)90039-4 | es_ES |
dc.description.references | Abigerges, D., Chabot, G. G., Armand, J. P., Hérait, P., Gouyette, A., & Gandia, D. (1995). Phase I and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer patients. Journal of Clinical Oncology, 13(1), 210-221. doi:10.1200/jco.1995.13.1.210 | es_ES |
dc.description.references | Mas, N., Agostini, A., Mondragón, L., Bernardos, A., Sancenón, F., Marcos, M. D., … Pérez-Payá, E. (2012). Enzyme-Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 19(4), 1346-1356. doi:10.1002/chem.201202740 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161e | es_ES |
dc.description.references | Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b | es_ES |