- -

Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Mas, Rafael es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.contributor.author Alcaraz-Hernández, Juan Diego es_ES
dc.contributor.author Mouton, A. M. es_ES
dc.date.accessioned 2016-01-22T18:35:44Z
dc.date.available 2016-01-22T18:35:44Z
dc.date.issued 2015-08-10
dc.identifier.issn 0304-3800
dc.identifier.uri http://hdl.handle.net/10251/60129
dc.description.abstract The potential of Multilayer Perceptron (MLP) Ensembles to explore the ecology of freshwater fish specieswas tested by applying the technique to redfin barbel (Barbus haasi Mertens, 1925), an endemic and mon-tane species that inhabits the North-East quadrant of the Iberian Peninsula. Two different MLP Ensembleswere developed. The physical habitat model considered only abiotic variables, whereas the biotic modelalso included the density of the accompanying fish species and several invertebrate predictors. The results showed that MLP Ensembles may outperform single MLPs. Moreover, active selection of MLP candidatesto create an optimal subset of MLPs can further improve model performance. The physical habitat modelconfirmed the redfin barbel preference for middle-to-upper river segments whereas the importance ofdepth confirms that redfin barbel prefers pool-type habitats. Although the biotic model showed higheruncertainty, it suggested that redfin barbel, European eel and the considered cyprinid species have similarhabitat requirements. Due to its high predictive performance and its ability to deal with model uncertainty, the MLP Ensemble is a promising tool for ecological modelling or habitat suitability prediction in environmental flow assessment. es_ES
dc.description.sponsorship This study was funded by the Spanish Ministry of Economy and Competitiveness with the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065) and the Universitat Politecnica de Valencia, through the project UPPTE/2012/294 (PAID-06-12). Additionally, the authors would like to thank the help of the Conselleria de Territori i Vivenda (Generalitat Valenciana) and the Confederacion Hidrografica del Jucar (Spanish government) which provided environmental data. The authors are indebted to all the colleagues who collaborated in the field data collection and the text adequacy; without their help this paper would have not been possible. Last but not least, the authors would like to specifically thank E. Aparicio and A.J. Cannon, the former because he selflessly provided the bibliography about the redfin barbel and the latter because he patiently explained the 'ins and outs' of the monmlp package. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Ecological Modelling es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural networks es_ES
dc.subject Barbus haasi es_ES
dc.subject Data mining es_ES
dc.subject Species distribution modelling es_ES
dc.subject Uncertainty analysis es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Can multilayer perceptron ensembles model the ecological niche of freshwater fish species? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ecolmodel.2015.04.025
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPPTE%2F2012%2F294/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Muñoz Mas, R.; Martinez-Capel, F.; Alcaraz-Hernández, JD.; Mouton, AM. (2015). Can multilayer perceptron ensembles model the ecological niche of freshwater fish species?. Ecological Modelling. 309-310:72-81. https://doi.org/10.1016/j.ecolmodel.2015.04.025 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ecolmodel.2015.04.025 es_ES
dc.description.upvformatpinicio 72 es_ES
dc.description.upvformatpfin 81 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 309-310 es_ES
dc.relation.senia 298487 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem