- -

The special elements in a ring related to the Drazin inverses

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The special elements in a ring related to the Drazin inverses

Show full item record

Lebtahi Ep-Kadi-Hahifi, L.; Patrício, P.; Thome, N. (2013). The special elements in a ring related to the Drazin inverses. Linear and Multilinear Algebra. 61(8):1017-1027. doi:10.1080/03081087.2012.728598

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60175

Files in this item

Item Metadata

Title: The special elements in a ring related to the Drazin inverses
Author: Lebtahi Ep-Kadi-Hahifi, Leila Patrício, Pedro Thome, Néstor
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
In this article, the existence of the Drazin (group) inverse of an element a in a ring is analysed when amk ¼ kan , for some unit k and m, n 2 N. The same problem is studied for the case when a* ¼ kamk1 and for the {k, ...[+]
Subjects: Involutory element , Power , Ring , Drazin inverse
Copyrigths: Reserva de todos los derechos
Source:
Linear and Multilinear Algebra. (issn: 0308-1087 )
DOI: 10.1080/03081087.2012.728598
Publisher:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Publisher version: http://dx.doi.org/10.1080/03081087.2012.728598
Thanks:
The authors thank the referees for their valuable comments and suggestions. The first and third authors have been partially supported by grant DGI MTM2010-18228, by Ministry of Education of Argentina (PPUA, grant Resol. ...[+]
Type: Artículo

References

Bru, R., & Thome, N. (1998). Group inverse and group involutory Matrices∗. Linear and Multilinear Algebra, 45(2-3), 207-218. doi:10.1080/03081089808818587

Hartwig, R., & Luh, J. (1977). On finite regular rings. Pacific Journal of Mathematics, 69(1), 73-95. doi:10.2140/pjm.1977.69.73

PATRÍCIO, P., & HARTWIG, R. E. (2010). THE LINK BETWEEN REGULARITY AND STRONG-PI-REGULARITY. Journal of the Australian Mathematical Society, 89(1), 17-22. doi:10.1017/s1446788710001448 [+]
Bru, R., & Thome, N. (1998). Group inverse and group involutory Matrices∗. Linear and Multilinear Algebra, 45(2-3), 207-218. doi:10.1080/03081089808818587

Hartwig, R., & Luh, J. (1977). On finite regular rings. Pacific Journal of Mathematics, 69(1), 73-95. doi:10.2140/pjm.1977.69.73

PATRÍCIO, P., & HARTWIG, R. E. (2010). THE LINK BETWEEN REGULARITY AND STRONG-PI-REGULARITY. Journal of the Australian Mathematical Society, 89(1), 17-22. doi:10.1017/s1446788710001448

Koliha, J. J., Djordjević, D., & Cvetković, D. (2007). Moore–Penrose inverse in rings with involution. Linear Algebra and its Applications, 426(2-3), 371-381. doi:10.1016/j.laa.2007.05.012

Lebtahi, L., Romero, O., & Thome, N. (2012). Characterizations of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:mo stretchy=«false»>{</mml:mo><mml:mi>K</mml:mi><mml:mtext>,</mml:mtext><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>}</mml:mo></mml:mrow></mml:math>-potent matrices and applications. Linear Algebra and its Applications, 436(2), 293-306. doi:10.1016/j.laa.2010.11.034

Lebtahi, L., Romero, Ó., & Thome, N. (2013). Relations between <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:mo stretchy=«false»>{</mml:mo><mml:mi>K</mml:mi><mml:mtext>,</mml:mtext><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>}</mml:mo></mml:mrow></mml:math>-potent matrices and different classes of complex matrices. Linear Algebra and its Applications, 438(4), 1517-1531. doi:10.1016/j.laa.2011.10.042

Meenakshi, A. R., & Krishnamoorthy, S. (1998). On k-EP matrices. Linear Algebra and its Applications, 269(1-3), 219-232. doi:10.1016/s0024-3795(97)00066-9

Mosić, D., Djordjević, D. S., & Koliha, J. J. (2009). EP elements in rings. Linear Algebra and its Applications, 431(5-7), 527-535. doi:10.1016/j.laa.2009.02.032

[-]

This item appears in the following Collection(s)

Show full item record