Bru, R., & Thome, N. (1998). Group inverse and group involutory Matrices∗. Linear and Multilinear Algebra, 45(2-3), 207-218. doi:10.1080/03081089808818587
Hartwig, R., & Luh, J. (1977). On finite regular rings. Pacific Journal of Mathematics, 69(1), 73-95. doi:10.2140/pjm.1977.69.73
PATRÍCIO, P., & HARTWIG, R. E. (2010). THE LINK BETWEEN REGULARITY AND STRONG-PI-REGULARITY. Journal of the Australian Mathematical Society, 89(1), 17-22. doi:10.1017/s1446788710001448
[+]
Bru, R., & Thome, N. (1998). Group inverse and group involutory Matrices∗. Linear and Multilinear Algebra, 45(2-3), 207-218. doi:10.1080/03081089808818587
Hartwig, R., & Luh, J. (1977). On finite regular rings. Pacific Journal of Mathematics, 69(1), 73-95. doi:10.2140/pjm.1977.69.73
PATRÍCIO, P., & HARTWIG, R. E. (2010). THE LINK BETWEEN REGULARITY AND STRONG-PI-REGULARITY. Journal of the Australian Mathematical Society, 89(1), 17-22. doi:10.1017/s1446788710001448
Koliha, J. J., Djordjević, D., & Cvetković, D. (2007). Moore–Penrose inverse in rings with involution. Linear Algebra and its Applications, 426(2-3), 371-381. doi:10.1016/j.laa.2007.05.012
Lebtahi, L., Romero, O., & Thome, N. (2012). Characterizations of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:mo stretchy=«false»>{</mml:mo><mml:mi>K</mml:mi><mml:mtext>,</mml:mtext><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>}</mml:mo></mml:mrow></mml:math>-potent matrices and applications. Linear Algebra and its Applications, 436(2), 293-306. doi:10.1016/j.laa.2010.11.034
Lebtahi, L., Romero, Ó., & Thome, N. (2013). Relations between <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:mo stretchy=«false»>{</mml:mo><mml:mi>K</mml:mi><mml:mtext>,</mml:mtext><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>}</mml:mo></mml:mrow></mml:math>-potent matrices and different classes of complex matrices. Linear Algebra and its Applications, 438(4), 1517-1531. doi:10.1016/j.laa.2011.10.042
Meenakshi, A. R., & Krishnamoorthy, S. (1998). On k-EP matrices. Linear Algebra and its Applications, 269(1-3), 219-232. doi:10.1016/s0024-3795(97)00066-9
Mosić, D., Djordjević, D. S., & Koliha, J. J. (2009). EP elements in rings. Linear Algebra and its Applications, 431(5-7), 527-535. doi:10.1016/j.laa.2009.02.032
[-]