Mitra, S. K., & Bhimasankaram, P. (2010). MATRIX PARTIAL ORDERS, SHORTED OPERATORS AND APPLICATIONS. SERIES IN ALGEBRA. doi:10.1142/9789812838452
Baksalary, J. K., & Hauke, J. (1990). A further algebraic version of Cochran’s theorem and matrix partial orderings. Linear Algebra and its Applications, 127, 157-169. doi:10.1016/0024-3795(90)90341-9
Patrício P, Mendes Araujo C. Moore-Penrose invertibility in involutory rings: the caseaa†=bb†. Linear and Multilinear Algebra. 2010;58:445–452.
[+]
Mitra, S. K., & Bhimasankaram, P. (2010). MATRIX PARTIAL ORDERS, SHORTED OPERATORS AND APPLICATIONS. SERIES IN ALGEBRA. doi:10.1142/9789812838452
Baksalary, J. K., & Hauke, J. (1990). A further algebraic version of Cochran’s theorem and matrix partial orderings. Linear Algebra and its Applications, 127, 157-169. doi:10.1016/0024-3795(90)90341-9
Patrício P, Mendes Araujo C. Moore-Penrose invertibility in involutory rings: the caseaa†=bb†. Linear and Multilinear Algebra. 2010;58:445–452.
Blackwood, B., Jain, S. K., Prasad, K. M., & Srivastava, A. K. (2009). Shorted Operators Relative to a Partial Order in a Regular Ring. Communications in Algebra, 37(11), 4141-4152. doi:10.1080/00927870902828629
Baksalary, J. K., Baksalary, O. M., & Liu, X. (2003). Further properties of the star, left-star, right-star, and minus partial orderings. Linear Algebra and its Applications, 375, 83-94. doi:10.1016/s0024-3795(03)00609-8
Baksalary, J. K., Baksalary, O. M., Liu, X., & Trenkler, G. (2008). Further results on generalized and hypergeneralized projectors. Linear Algebra and its Applications, 429(5-6), 1038-1050. doi:10.1016/j.laa.2007.03.029
Hauke, J., Markiewicz, A., & Szulc, T. (2001). Inter- and extrapolatory properties of matrix partial orderings. Linear Algebra and its Applications, 332-334, 437-445. doi:10.1016/s0024-3795(01)00294-4
Mosić, D., & Djordjević, D. S. (2012). Some results on the reverse order law in rings with involution. Aequationes mathematicae, 83(3), 271-282. doi:10.1007/s00010-012-0125-2
Mosić, D., & Djordjević, D. S. (2011). Further results on the reverse order law for the Moore–Penrose inverse in rings with involution. Applied Mathematics and Computation, 218(4), 1478-1483. doi:10.1016/j.amc.2011.06.040
Tošić, M., & Cvetković-Ilić, D. S. (2012). Invertibility of a linear combination of two matrices and partial orderings. Applied Mathematics and Computation, 218(9), 4651-4657. doi:10.1016/j.amc.2011.10.052
[-]