- -

Application of the physical habitat simulation for fish species to assess environmental flows in an Atlantic Forest Stream in South-eastern Brazil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of the physical habitat simulation for fish species to assess environmental flows in an Atlantic Forest Stream in South-eastern Brazil

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author da Costa, Marcus Rodrigues es_ES
dc.contributor.author Mattos, Tailan Moretti es_ES
dc.contributor.author Fernandes, Victor Hugo es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.contributor.author Muñoz Mas, Rafael es_ES
dc.contributor.author Araujo, Francisco Gerson es_ES
dc.date.accessioned 2016-01-26T19:01:07Z
dc.date.available 2016-01-26T19:01:07Z
dc.date.issued 2015-10
dc.identifier.issn 1679-6225
dc.identifier.uri http://hdl.handle.net/10251/60205
dc.description.abstract The physical habitat simulation sub-routine of the Instream Flow Incremental Methodology (IFIM) uses hydraulic modeling and suitability indices of target fish species to predict how differences in-stream flows affect the microhabitat occupation by fish species. This habitat modelling approach was adopted to assess the ecological effects of running flows on three neotropical fish species of different orders (Bryconamericus ornaticeps, Ancistrus multispinis and Geophagus brasiliensis).The study encompassed two reaches of an Atlantic Forest stream in Southeastern Brazil where topographic and hydraulic (depth, velocity and type of substrate) characteristics were measured to implement one-dimensional hydraulic simulation. Sub aquatic observation of fish was performed to collect data on microhabitat use and these data were used to develop habitat suitability curves that were used in the habitat simulation to obtain the habitat suitability index (HSI) and weighted usable area (WUA) versus flow curves. Upon these curves minimum and optimum environmental flows for the target fish species were proposed. Bryconamericus ornaticeps and A. multispinis selected microhabitats around 0.6 m depth, whereas G. brasiliensis showed a wider suitable range (0.35-0.9 m). All the three species were mainly observed in microhabitat with low flow velocity (0.1 m/s). Bryconamericus ornaticeps selected more frequently coarse substrate (e.g. boulders) but it appeared also over sandy substrate, whereas A. multispinis and G. brasiliensis selected preferably boulders. The range of 0.65-0.85 m3/s was found as the optimum to meet the needs of the three fish species. Our results agree with the necessary objective information to perform grounded management actions in the frame of a management program aiming at ecosystem conservation. Thereby it can be considered a successful pilot study in environmental flow assessment in an Atlantic Forest stream of Brazil. es_ES
dc.description.sponsorship The authors wish to thank Fundacao de Amparo a Pesquisa do Estado so Rio de Janeiro-FAPERJ / CAPES - Federal Supporting Research of the Brazilian Government for providing scholarships for the first author. We thank the director of CTUR R. C. Albieri for the loan of surveying equipment to carry out the field work. en_EN
dc.language Inglés es_ES
dc.publisher Sociedade Brasileira de Ictiologia es_ES
dc.relation.ispartof Neotropical Ichthyology es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Habitat modeling es_ES
dc.subject Habitat suitability curves es_ES
dc.subject Neotropical fish es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Application of the physical habitat simulation for fish species to assess environmental flows in an Atlantic Forest Stream in South-eastern Brazil es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1590/1982-0224-20140170
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Da Costa, MR.; Mattos, TM.; Fernandes, VH.; Martinez-Capel, F.; Muñoz Mas, R.; Araujo, FG. (2015). Application of the physical habitat simulation for fish species to assess environmental flows in an Atlantic Forest Stream in South-eastern Brazil. Neotropical Ichthyology. 13(4):685-698. doi:10.1590/1982-0224-20140170 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1590/1982-0224-20140170 es_ES
dc.description.upvformatpinicio 685 es_ES
dc.description.upvformatpfin 698 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 298731 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro es_ES
dc.description.references Acreman, M. C., & Dunbar, M. J. (2004). Defining environmental river flow requirements – a review. Hydrology and Earth System Sciences, 8(5), 861-876. doi:10.5194/hess-8-861-2004 es_ES
dc.description.references Ahmadi-Nedushan, B., St-Hilaire, A., Bérubé, M., Robichaud, É., Thiémonge, N., & Bobée, B. (2006). A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Research and Applications, 22(5), 503-523. doi:10.1002/rra.918 es_ES
dc.description.references Angermeier, P. L., & Schlosser, I. J. (1989). Species-Area Relationship for Stream Fishes. Ecology, 70(5), 1450-1462. doi:10.2307/1938204 es_ES
dc.description.references Arthington, A. H., & Pusey, B. J. (2003). Flow restoration and protection in Australian rivers. River Research and Applications, 19(5-6), 377-395. doi:10.1002/rra.745 es_ES
dc.description.references Assis, H. C. da S. de, Nicareta, L., Salvo, L. M., Klemz, C., Truppel, J. H., & Calegari, R. (2009). Biochemical biomarkers of exposure to deltamethrin in freshwater fish, Ancistrus multispinis. Brazilian Archives of Biology and Technology, 52(6), 1401-1407. doi:10.1590/s1516-89132009000600012 es_ES
dc.description.references Barletta, M., Jaureguizar, A. J., Baigun, C., Fontoura, N. F., Agostinho, A. A., Almeida-Val, V. M. F., … Corrêa, M. F. M. (2010). Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. Journal of Fish Biology, 76(9), 2118-2176. doi:10.1111/j.1095-8649.2010.02684.x es_ES
dc.description.references BLANCK, A., TEDESCO, P. A., & LAMOUROUX, N. (2007). Relationships between life-history strategies of European freshwater fish species and their habitat preferences. Freshwater Biology, 52(5), 843-859. doi:10.1111/j.1365-2427.2007.01736.x es_ES
dc.description.references Bowen, B. W., Bass, A. L., Rocha, L. A., Grant, W. S., & Robertson, D. R. (2001). PHYLOGEOGRAPHY OF THE TRUMPETFISHES (AULOSTOMUS): RING SPECIES COMPLEX ON A GLOBAL SCALE. Evolution, 55(5), 1029. doi:10.1554/0014-3820(2001)055[1029:pottar]2.0.co;2 es_ES
dc.description.references BUNN, S. E., & ARTHINGTON, A. H. (2002). Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management, 30(4), 492-507. doi:10.1007/s00267-002-2737-0 es_ES
dc.description.references Castro, M. A. de, Santos, H. de A., Sampaio, F. A. C., & Pompeu, P. S. (2010). Swimming performance of the small characin Bryconamericus stramineus (Characiformes: Characidae). Zoologia (Curitiba), 27(6), 939-944. doi:10.1590/s1984-46702010000600015 es_ES
dc.description.references Copp, G. H., & Jurajda, P. (1993). Do small riverine fish move inshore at night? Journal of Fish Biology, 43(sa), 229-241. doi:10.1111/j.1095-8649.1993.tb01190.x es_ES
dc.description.references Costa, R. M. S., Martínez-Capel, F., Muñoz-Mas, R., Alcaraz-Hernández, J. D., & Garófano-Gómez, V. (2011). HABITAT SUITABILITY MODELLING AT MESOHABITAT SCALE AND EFFECTS OF DAM OPERATION ON THE ENDANGERED JúCAR NASE, PARACHONDROSTOMA ARRIGONIS (RIVER CABRIEL, SPAIN). River Research and Applications, 28(6), 740-752. doi:10.1002/rra.1598 es_ES
dc.description.references Costa, M. R. da, Mattos, T. M., Borges, J. L., & Araújo, F. G. (2013). Habitat preferences of common native fishes in a tropical river in Southeastern Brazil. Neotropical Ichthyology, 11(4), 871-880. doi:10.1590/s1679-62252013000400015 es_ES
dc.description.references Da Costa, M. R., Moreti, T., Uehara, W., dos Santos, H. K., & Araújo, F. G. (2015). Length-weight relationships for 15 fish species from Atlantic rain forest streams, southeastern Brazil. Journal of Applied Ichthyology, 31(4), 809-810. doi:10.1111/jai.12788 es_ES
dc.description.references Crook, D. A., & Robertson, A. I. (1999). Relationships between riverine fish and woody debris: implications for lowland rivers. Marine and Freshwater Research. doi:10.1071/mf99072 es_ES
dc.description.references Ferreira, K. M. (2007). Biology and ecomorphology of stream fishes from the rio Mogi-Guaçu basin, Southeastern Brazil. Neotropical Ichthyology, 5(3), 311-326. doi:10.1590/s1679-62252007000300012 es_ES
dc.description.references De Jalón, D. G. (2003). The Spanish Experience in Determining Minimum Flow Regimes in Regulated Streams. Canadian Water Resources Journal, 28(2), 185-198. doi:10.4296/cwrj2802185 es_ES
dc.description.references Geerinckx, T., Verhaegen, Y., & Adriaens, D. (2008). Ontogenetic allometries and shape changes in the suckermouth armoured catfish Ancistrus cf. triradiatus Eigenmann (Loricariidae, Siluriformes), related to suckermouth attachment and yolk-sac size. Journal of Fish Biology, 72(4), 803-814. doi:10.1111/j.1095-8649.2007.01755.x es_ES
dc.description.references Gore, J. A., & Nestler, J. M. (1988). Instream flow studies in perspective. Regulated Rivers: Research & Management, 2(2), 93-101. doi:10.1002/rrr.3450020204 es_ES
dc.description.references Grossman, G. D., & de Sostoa, A. (1994). Microhabitat use by fish in the lower Rio Matarrana, Spain, 1984-1987. Ecology of Freshwater Fish, 3(3), 123-136. doi:10.1111/j.1600-0633.1994.tb00114.x es_ES
dc.description.references Heggenes, J., Brabrand, Åg., & Saltveit, S. (1990). Comparison of Three Methods for Studies of Stream Habitat Use by Young Brown Trout and Atlantic Salmon. Transactions of the American Fisheries Society, 119(1), 101-111. doi:10.1577/1548-8659(1990)119<0101:cotmfs>2.3.co;2 es_ES
dc.description.references King, J., & Brown, C. (2006). Environmental Flows: Striking the Balance between Development and Resource Protection. Ecology and Society, 11(2). doi:10.5751/es-01682-110226 es_ES
dc.description.references Lambert, T. R., & Hanson, D. F. (1989). Development of habitat suitability criteria for trout in small streams. Regulated Rivers: Research & Management, 3(1), 291-303. doi:10.1002/rrr.3450030128 es_ES
dc.description.references LAMOUROUX, N., & CAPRA, H. (2002). Simple predictions of instream habitat model outputs for target fish populations. Freshwater Biology, 47(8), 1543-1556. doi:10.1046/j.1365-2427.2002.00879.x es_ES
dc.description.references Lamouroux, N., Capra, H., Pouilly, M., & Souchon, Y. (1999). Fish habitat preferences in large streams of southern France. Freshwater Biology, 42(4), 673-687. doi:10.1046/j.1365-2427.1999.00521.x es_ES
dc.description.references Leal, C. G., Junqueira, N. T., & Pompeu, P. S. (2010). Morphology and habitat use by fishes of the Rio das Velhas basin in southeastern Brazil. Environmental Biology of Fishes, 90(2), 143-157. doi:10.1007/s10641-010-9726-6 es_ES
dc.description.references Lee, P.-Y., & Suen, J.-P. (2011). Niche partitioning of fish assemblages in a mountain stream with frequent natural disturbances - an examination of microhabitat in riffle areas. Ecology of Freshwater Fish, 21(2), 255-265. doi:10.1111/j.1600-0633.2011.00544.x es_ES
dc.description.references Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94-100. doi:10.1016/j.tree.2003.10.002 es_ES
dc.description.references MARTÍNEZ-CAPEL, F., GARCÍA DE JALÓN, D., WERENITZKY, D., BAEZA, D., & RODILLA-ALAMÁ, M. (2009). Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fisheries Management and Ecology, 16(1), 52-60. doi:10.1111/j.1365-2400.2008.00645.x es_ES
dc.description.references Mouton, A. M., Schneider, M., Peter, A., Holzer, G., Müller, R., Goethals, P. L. M., & De Pauw, N. (2008). Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecological Modelling, 215(1-3), 122-132. doi:10.1016/j.ecolmodel.2008.02.028 es_ES
dc.description.references Mouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L. M., & Martínez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001 es_ES
dc.description.references Muñoz-Mas, R., Martínez-Capel, F., Garófano-Gómez, V., & Mouton, A. M. (2014). Application of Probabilistic Neural Networks to microhabitat suitability modelling for adult brown trout (Salmo trutta L.) in Iberian rivers. Environmental Modelling & Software, 59, 30-43. doi:10.1016/j.envsoft.2014.05.003 es_ES
dc.description.references Muñoz-Mas, R., Martínez-Capel, F., Schneider, M., & Mouton, A. M. (2012). Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of The Total Environment, 440, 123-131. doi:10.1016/j.scitotenv.2012.07.074 es_ES
dc.description.references Naiman, R. J., Latterell, J. J., Pettit, N. E., & Olden, J. D. (2008). Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience, 340(9-10), 629-643. doi:10.1016/j.crte.2008.01.002 es_ES
dc.description.references Paredes-Arquiola, J., Martinez-Capel, F., Solera, A., & Aguilella, V. (2011). IMPLEMENTING ENVIRONMENTAL FLOWS IN COMPLEX WATER RESOURCES SYSTEMS - CASE STUDY: THE DUERO RIVER BASIN, SPAIN. River Research and Applications, 29(4), 451-468. doi:10.1002/rra.1617 es_ES
dc.description.references Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., & Andreu, J. (2014). Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59(3-4), 878-889. doi:10.1080/02626667.2013.821573 es_ES
dc.description.references POFF, N. L., RICHTER, B. D., ARTHINGTON, A. H., BUNN, S. E., NAIMAN, R. J., KENDY, E., … WARNER, A. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170. doi:10.1111/j.1365-2427.2009.02204.x es_ES
dc.description.references Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099 es_ES
dc.description.references Power, M. E. (1984). Depth Distributions of Armored Catfish: Predator-Induced Resource Avoidance? Ecology, 65(2), 523-528. doi:10.2307/1941414 es_ES
dc.description.references RABENI, C. F., & JACOBSON, R. B. (1993). The importance of fluvial hydraulics to fish-habitat restoration in low-gradient alluvial streams. Freshwater Biology, 29(2), 211-220. doi:10.1111/j.1365-2427.1993.tb00758.x es_ES
dc.description.references Richter, B. D., Warner, A. T., Meyer, J. L., & Lutz, K. (2006). A collaborative and adaptive process for developing environmental flow recommendations. River Research and Applications, 22(3), 297-318. doi:10.1002/rra.892 es_ES
dc.description.references Rincon, P. A., Correas, A. M., Morcillo, F., Risueno, P., & Lobon-Cervia, J. (2002). Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. Journal of Fish Biology, 61(6), 1560-1585. doi:10.1111/j.1095-8649.2002.tb02498.x es_ES
dc.description.references Costa Sampaio, F., Santos Pompeu, P., de Andrade e Santos, H., & Lopes Ferreira, R. (2012). Swimming performance of epigeal and hypogeal species of Characidae, with an emphasis on the troglobiotic Stygichthys typhlops Brittan & Böhlke, 1965. International Journal of Speleology, 41(1), 9-16. doi:10.5038/1827-806x.41.1.2 es_ES
dc.description.references Schneider, K. N., & Winemiller, K. O. (2008). Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia, 610(1), 235-244. doi:10.1007/s10750-008-9438-5 es_ES
dc.description.references Schwartz, J. S., & Herricks, E. E. (2008). Fish use of ecohydraulic-based mesohabitat units in a low-gradient Illinois stream: implications for stream restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(6), 852-866. doi:10.1002/aqc.905 es_ES
dc.description.references Strakosh, T. R., Neumann, R. M., & Jacobson, R. A. (2003). Development and assessment of habitat suitability criteria for adult brown trout in southern New England rivers. Ecology of Freshwater Fish, 12(4), 265-274. doi:10.1046/j.1600-0633.2003.00022.x es_ES
dc.description.references Teresa, F. B., & Casatti, L. (2013). Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status. Neotropical Ichthyology, 11(2), 395-402. doi:10.1590/s1679-62252013005000009 es_ES
dc.description.references Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5-6), 397-441. doi:10.1002/rra.736 es_ES
dc.description.references Thomas, J. A., & Bovee, K. D. (1993). Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regulated Rivers: Research & Management, 8(3), 285-294. doi:10.1002/rrr.3450080307 es_ES
dc.description.references Vadas, R. L., & Orth, D. J. (2001). Formulation of Habitat Suitability Models for Stream Fish Guilds: Do the Standard Methods Work? Transactions of the American Fisheries Society, 130(2), 217-235. doi:10.1577/1548-8659(2001)130<0217:fohsmf>2.0.co;2 es_ES
dc.description.references Vono, V., & Barbosa, F. A. R. (2001). Environmental Biology of Fishes, 61(4), 371-379. doi:10.1023/a:1011628102125 es_ES
dc.description.references Wood, B. M., & Bain, M. B. (1995). Morphology and microhabitat use in stream fish. Canadian Journal of Fisheries and Aquatic Sciences, 52(7), 1487-1498. doi:10.1139/f95-143 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem