- -

Using semivariogram indices to analyse heterogeneity in spatial patterns in remotely sensed images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using semivariogram indices to analyse heterogeneity in spatial patterns in remotely sensed images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balaguer Beser, Ángel Antonio es_ES
dc.contributor.author Ruiz Fernández, Luis Ángel es_ES
dc.contributor.author Hermosilla, T. es_ES
dc.contributor.author Recio Recio, Jorge Abel es_ES
dc.date.accessioned 2016-01-28T15:17:44Z
dc.date.available 2016-01-28T15:17:44Z
dc.date.issued 2013-01
dc.identifier.issn 0098-3004
dc.identifier.uri http://hdl.handle.net/10251/60332
dc.description.abstract he benchmark problem proposed in this paper is to identify regions in aerial or satellite images with geometric patterns and describe the geometric properties of the constituent elements of the pattern and their spatial distribution. This is a relevant topic in image analysis processes where spatial regular patterns are studied. This paper first presents two approaches based on multi-directional semivariograms for reducing the processing time required to compute omnidirectional semivariograms. A set of parameters for describing the structure of a semivariogram, introduced by Balaguer et al. (2010), is extracted from an experimental semivariogram and analysed to quantify the heterogeneity of the distribution of elements (trees) with periodic patterns in images of orchards. An assessment is made using four image datasets. The first dataset is composed of synthetic images that simulate regularly spaced tree crops and real images, and is used to evaluate the influence that the orientation of elements (regularly spaced trees) in the objects (crop plots) has in the descriptive parameter values. This dataset is also used to compare different semivariogram computational approaches. The other three are also composed of synthetic images and are used to evaluate the semivariogram parameters under different spatial heterogeneity conditions, and are generated by varying patterns and tree characteristics, i.e., existence or absence of faults, regular/irregular distributions, and size of the elements. Finally, the proposed methodology is applied to real aerial orthoimages of orchard plots. es_ES
dc.description.sponsorship The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation within the framework of the projects CGL2009-14220 and CGL2010-19591/BTE. The use of English has been revised by John Rawlins. The authors express their gratitude to the anonymous reviewers for their helpful comments. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Geosciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Semivariogram es_ES
dc.subject Object-based analysis es_ES
dc.subject Image processing es_ES
dc.subject Pattern heterogeneity es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Using semivariogram indices to analyse heterogeneity in spatial patterns in remotely sensed images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cageo.2012.08.001
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Balaguer Beser, ÁA.; Ruiz Fernández, LÁ.; Hermosilla, T.; Recio Recio, JA. (2013). Using semivariogram indices to analyse heterogeneity in spatial patterns in remotely sensed images. Computers and Geosciences. 50:115-127. https://doi.org/10.1016/j.cageo.2012.08.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.cageo.2012.08.001 es_ES
dc.description.upvformatpinicio 115 es_ES
dc.description.upvformatpfin 127 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.relation.senia 231114 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem