dc.contributor.author |
Akhlaghi, Z.
|
es_ES |
dc.contributor.author |
Beltrán, Antonio
|
es_ES |
dc.contributor.author |
Felipe Román, María Josefa
|
es_ES |
dc.contributor.author |
Khatami, M.
|
|
dc.date.accessioned |
2016-01-28T15:34:08Z |
|
dc.date.available |
2016-01-28T15:34:08Z |
|
dc.date.issued |
2012-07 |
|
dc.identifier.issn |
0026-9255 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/60335 |
|
dc.description.abstract |
Let G be a finite group and N be a normal subgroup of G. Suppose that the set of G-conjugacy class sizes of N is {1, m, n}, with m < n and m does not divide n. In this paper, we show that N is solvable, and we determine the structure of these subgroups. |
es_ES |
dc.description.sponsorship |
A. Beltran and M. J. Felipe are supported by Proyecto MTM2007-68010-C03-03, by Proyecto MTM2010-19938-C03-02 and by Proyecto GV-2009-021. A. Beltran is also supported by grant Fundacio Caixa-Castello P11B2008-09. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Verlag (Germany) |
es_ES |
dc.relation |
Fundacio Caixa-Castello [P11B2008-09]; [MTM2007-68010-C03-03]; [MTM2010-19938-C03-02]; [GV-2009-021] |
es_ES |
dc.relation.ispartof |
Monatshefte für Mathematik |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Finite groups |
es_ES |
dc.subject |
Conjugacy class sizes |
es_ES |
dc.subject |
Normal subgroups |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Structure of normal subgroups with three G-class sizes |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s00605-011-0290-8 |
|
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Akhlaghi, Z.; Beltrán, A.; Felipe Román, MJ.; Khatami, M. (2012). Structure of normal subgroups with three G-class sizes. Monatshefte für Mathematik. 167(1):1-12. doi:10.1007/s00605-011-0290-8 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1007/s00605-011-0290-8 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
12 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
167 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.relation.senia |
239231 |
es_ES |
dc.relation.references |
Alemany, E., Beltrán, A., Felipe, M.J.: Nilpotency of normal subgroups having two G-class sizes. Proc. Am. Math. Soc. (2010). doi: 10.1090/S0002-9939-2010-10702-5 |
es_ES |
dc.relation.references |
Baer R.: Einfache Partitionen endlicher Gruppen mit nicht-trivialer Fittingscher Untergruppe. (German) Arch. Math. (Basel) 12, 81–89 (1961) |
es_ES |
dc.relation.references |
Baer R.: Partitionen endlicher Gruppen. (German) Math. Z. 75, 333–372 (1961) |
es_ES |
dc.relation.references |
Conway J.H., Curtis R.T., Norton S.P., Wilson R.M.: The Atlas of Finite Groups. Clarendon Press, Oxford (1985) |
es_ES |
dc.relation.references |
Dolfi S., Jabara E.: The structure of finite groups of conjugate rank 2. Bull. Lond. Math. Soc. 41, 916–926 (2009) |
es_ES |
dc.relation.references |
Huppert B.: Character Theory of Finite Groups. Walter de Gruyter, Berlin (1998) |
es_ES |
dc.relation.references |
Isaacs I.M.: Subgroups generated by small classes in finite groups. Proc. Am. Math. Soc. 136, 2299–2301 (2008) |
es_ES |
dc.relation.references |
Itô N.: On finite groups with given conjugate types. I. Nagoya Math. J. 6, 17–28 (1953) |
es_ES |
dc.relation.references |
Itô N.: On finite groups with given conjugate types. II. Osaka J. Math. 7, 231–251 (1970) |
es_ES |
dc.relation.references |
Kurzweil K., Stellmacher B.: The Theory of Finite Groups. An Introduction. Springer, New York (2004) |
es_ES |
dc.relation.references |
Rebmann J.: F-gruppen. (German) Arch. Math. 22, 225–230 (1971) |
es_ES |
dc.relation.references |
Schmidt R.: Subgroup Lattices of Groups. Walter de Gruyter, Berlin (1994) |
es_ES |
dc.relation.references |
Suzuki M.: On a finite group with a partition. Arch. Math. (Basel) 12, 241–254 (1961) |
es_ES |
dc.relation.references |
The GAP Group, GAP—Groups, Algorithms and Programming, Vers. 4.4.12 (2008). http://www.gap-system.org |
es_ES |