Mostrar el registro sencillo del ítem
dc.contributor.author | Albanese, Angela A. | es_ES |
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner Joseph | es_ES |
dc.date.accessioned | 2016-01-29T19:17:07Z | |
dc.date.available | 2016-01-29T19:17:07Z | |
dc.date.issued | 2014-09-29 | |
dc.identifier.issn | 0039-3223 | |
dc.identifier.uri | http://hdl.handle.net/10251/60383 | |
dc.description.abstract | [EN] We characterize Köthe echelon spaces (and, more generally, those Fréchet spaces with an unconditional basis) which are Schwartz, in terms of the convergence of the Cesàro means of power bounded operators defined on them. This complements similar known characterizations of reflexive and of Fréchet–Montel spaces with a basis. Every strongly convergent sequence of continuous linear operators on a FréchetSchwartz space does so in a special way. We single out this type of “rapid convergence” for a sequence of operators and study its relationship to the structure of the underlying space. Its relevance for Schauder decompositions and the connection to mean ergodic operators on Fréchet–Schwartz spaces is also investigated. | es_ES |
dc.description.sponsorship | The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Polskiej Akademii Nauk, Instytut Matematyczny (Polish Academy of Sciences, Institute of Mathematics) | es_ES |
dc.relation.ispartof | Studia Mathematica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Power bounded operator | es_ES |
dc.subject | Mean ergodic operator | es_ES |
dc.subject | Fréchet-Schwartz space | es_ES |
dc.subject | Köthe echelon space | es_ES |
dc.subject | Schauder decomposition | es_ES |
dc.subject | Rapid convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Characterizing Fréchet-Schwartz spaces via power bounded operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4064/sm224-1-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2014). Characterizing Fréchet-Schwartz spaces via power bounded operators. Studia Mathematica. 224(1):25-45. https://doi.org/10.4064/sm224-1-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.4064/sm224-1-2 | es_ES |
dc.description.upvformatpinicio | 25 | es_ES |
dc.description.upvformatpfin | 45 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 224 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 279541 | es_ES |
dc.identifier.eissn | 1730-6337 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana |