- -

Principal component analysis in combination with case-base reasoning for detecting therapeutically correct and incorrect measurements in continuous glucose monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Principal component analysis in combination with case-base reasoning for detecting therapeutically correct and incorrect measurements in continuous glucose monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leal, Yenny es_ES
dc.contributor.author Ruiz, Magda es_ES
dc.contributor.author Lorencio, Carol es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Mujica, Luis es_ES
dc.contributor.author Vehi, Josep es_ES
dc.date.accessioned 2016-02-01T11:18:41Z
dc.date.available 2016-02-01T11:18:41Z
dc.date.issued 2013-07-02
dc.identifier.issn 1746-8094
dc.identifier.uri http://hdl.handle.net/10251/60418
dc.description.abstract This paper introduces a data-driven methodology for detecting therapeutically correct and incorrect measurements in continuous glucose monitoring systems (CGMSs) in an intensive care unit (ICU). The data collected from 22 patients in an ICU with insulin therapy were obtained following the protocol established in the ICU. Measurements were classified using principal component analysis (PCA) in combination with case-based reasoning (CBR), where a PCA model was built to extract features that were used as inputs of the CBR system. CBR was trained to recognize patterns and classify these data. Experimental results showed that this methodology is a potential tool to distinguish between therapeutically correct and incorrect measurements from a CGMS, using the information provided by the monitor itself, and incorporating variables about the patient’s clinical condition. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation under Grant DPI-2010-20764-C02, and by the Autonomous Government of Catalonia under Grant 2009 SGR 523. Yenny Leal is grateful for the BR Grants of the University of Girona. The authors would like to thank PhD student Xavier Berjaga, who helped with support of this work. The authors would like to thank the nursing and medical staff of the ICU of Doctor Josep Trueta Hospital for their work. They are also thankful to Medtronic, Inc., for providing some of the devices used in this study. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biomedical Signal Processing and Control es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Case-based reasoning es_ES
dc.subject Continuous glucose monitoring es_ES
dc.subject Critically ill patients es_ES
dc.subject Principal component analysis es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Principal component analysis in combination with case-base reasoning for detecting therapeutically correct and incorrect measurements in continuous glucose monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.bspc.2013.05.008
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20764-C02-02/ES/NUEVAS ESTRATEGIAS DE CONTROL GLUCEMICO POSTPRANDIAL MEDIANTE TERAPIA CON BOMBA DE INSULINA EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20764-C02-01/ES/NUEVAS ESTRATEGIAS DE CONTROL GLUCEMICO POSTPRANDIAL MEDIANTE TERAPIA CON BOMBA DE INSULINA EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2009 SGR 00523/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.description.bibliographicCitation Leal, Y.; Ruiz, M.; Lorencio, C.; Bondía Company, J.; Mujica, L.; Vehi, J. (2013). Principal component analysis in combination with case-base reasoning for detecting therapeutically correct and incorrect measurements in continuous glucose monitoring. Biomedical Signal Processing and Control. 8(6):603-614. https://doi.org/10.1016/j.bspc.2013.05.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.bspc.2013.05.008 es_ES
dc.description.upvformatpinicio 603 es_ES
dc.description.upvformatpfin 614 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 256085
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat de Catalunya es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem