- -

Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.contributor.author García Raffi, Luis Miguel es_ES
dc.date.accessioned 2016-02-01T15:54:44Z
dc.date.available 2016-02-01T15:54:44Z
dc.date.issued 2010
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/60447
dc.description.abstract Evanescent modes in complete sonic crystals (SCs) and SC with point defects are reported both theoretically and experimentally in this paper. Plane wave expansion (PWE) and in general, ω(k)ω(k) methods have been used to calculate band structures showing gaps that have been interpreted as ranges of frequencies where no real kk exists. In this work, we extend PWE to solve the complex k(ω)k(ω) problem applied to SC, introducing the supercell approximation for studying one vacancy. Explicit matrix formulation of the equations is given. This k(ω)k(ω) method enables the calculation of complex band structures, as well as enabling an analysis of the propagating modes related with real values of the function k(ω)k(ω), and the evanescent modes related with imaginary values of k(ω)k(ω). This paper shows theoretical results and experimental evidences of the evanescent behavior of modes inside the SC band gap. Experimental data and numerical results using the finite elements method are in very good agreement with the predictions obtained using the k(ω)k(ω) method. es_ES
dc.description.sponsorship The authors would like to thank Dr. E. A. Sanchez-Perez for his comments and suggestions and thank Daniel Fenollosa and Talleres Ferriols for their help in building the mechanical part of 3DReAMS. This work was supported by MEC (Spanish government) and the European Regional Development Fund, under Grant Nos. MAT2009-09438 and MTM2009-14483-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3466988
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Romero García, V.; Sánchez Pérez, JV.; García Raffi, LM. (2010). Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation. Journal of Applied Physics. 108(4):449071-4490716. doi:10.1063/1.3466988 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3466988 es_ES
dc.description.upvformatpinicio 449071 es_ES
dc.description.upvformatpfin 4490716 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 39409 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Sigalas, M., & Economou, E. N. (1993). Band structure of elastic waves in two dimensional systems. Solid State Communications, 86(3), 141-143. doi:10.1016/0038-1098(93)90888-t es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 es_ES
dc.description.references Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 es_ES
dc.description.references Economou, E. N., & Sigalas, M. M. (1993). Classical wave propagation in periodic structures: Cermet versus network topology. Physical Review B, 48(18), 13434-13438. doi:10.1103/physrevb.48.13434 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313 es_ES
dc.description.references Hernández-Cocoletzi, H., Krokhin, A., & Halevi, P. (1995). Reality of the eigenfrequencies of periodic elastic composites. Physical Review B, 51(23), 17181-17183. doi:10.1103/physrevb.51.17181 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 es_ES
dc.description.references Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., & Laude, V. (2003). Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21). doi:10.1103/physrevb.68.214301 es_ES
dc.description.references Khelif, A., Wilm, M., Laude, V., Ballandras, S., & Djafari-Rouhani, B. (2004). Guided elastic waves along a rod defect of a two-dimensional phononic crystal. Physical Review E, 69(6). doi:10.1103/physreve.69.067601 es_ES
dc.description.references Wu, L.-Y., Chen, L.-W., & Liu, C.-M. (2009). Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal. Physica B: Condensed Matter, 404(12-13), 1766-1770. doi:10.1016/j.physb.2009.02.025 es_ES
dc.description.references Engelen, R. J. P., Mori, D., Baba, T., & Kuipers, L. (2009). Subwavelength Structure of the Evanescent Field of an Optical Bloch Wave. Physical Review Letters, 102(2). doi:10.1103/physrevlett.102.023902 es_ES
dc.description.references Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. doi:10.1016/s0375-9601(01)00800-3 es_ES
dc.description.references Zhao, Y.-C., & Yuan, L.-B. (2008). Characteristics of multi-point defect modes in 2D phononic crystals. Journal of Physics D: Applied Physics, 42(1), 015403. doi:10.1088/0022-3727/42/1/015403 es_ES
dc.description.references Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y., & Hladky-Hennion, A.-C. (2008). Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8). doi:10.1103/physrevb.77.085415 es_ES
dc.description.references Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Sainidou, R., & Stefanou, N. (2006). Guided and quasiguided elastic waves in phononic crystal slabs. Physical Review B, 73(18). doi:10.1103/physrevb.73.184301 es_ES
dc.description.references Sigalas, M. M. (1998). Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 84(6), 3026-3030. doi:10.1063/1.368456 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem