Mostrar el registro sencillo del ítem
dc.contributor.author | González Parra, Gilberto Carlos | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.contributor.author | Santonja, Francisco José | es_ES |
dc.date.accessioned | 2016-02-03T14:49:30Z | |
dc.date.issued | 2012-10 | |
dc.identifier.issn | 1889-3805 | |
dc.identifier.uri | http://hdl.handle.net/10251/60564 | |
dc.description.abstract | [EN] In this paper a random differential equation system modeling population dynamics is investigated by means of the statistical moments equation. Monte Carlo simulations are performed in order to compare with the statistical moments equation approach. The randomness in the model appears due to the uncertainty on the initial conditions. The model is a nonlinear differential equation system with random initial conditions and is based on the classical SIS epidemic model. By assuming different probability distribution functions for the initial conditions of different classes of the population we obtain the mean and variance of the stochastic process representing the proportion of these classes at any time. The results show that the theoretical approach of moments equation agrees very well with Monte Carlo numerical results and the solutions converge to the equilibrium point independently of the probability distribution function of the initial conditions. | es_ES |
dc.description.sponsorship | The authors are grateful to the anonymous reviewers for their valuable comments and suggestions which improved the quality and the clarity of the paper. This work has been partially supported by the Spanish M.C.Y.T. and FEDER grants MTM2009–08587, DPI2010–20891–C02–01 as well as the Universitat Polit`ecnica de Val`encia grant PAID-06–09 (ref. 2588). | |
dc.language | Inglés | es_ES |
dc.publisher | Sociedad de Estadística e Investigación Operativa | es_ES |
dc.relation.ispartof | Boletín de Estadística e Investigación Operativa | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Random differential equation | es_ES |
dc.subject | Statistical moments equation | es_ES |
dc.subject | Stochastic process | es_ES |
dc.subject | Population dynamics | es_ES |
dc.subject | SIS epidemic model | es_ES |
dc.subject | Monte Carlo method | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Modeling population uncertainty using statistical moments | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-08587/ES/Ecuaciones Diferenciales Aleatorias Y Aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-09-2588/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | González Parra, GC.; Cortés, J.; Villanueva Micó, RJ.; Santonja, FJ. (2012). Modeling population uncertainty using statistical moments. Boletín de Estadística e Investigación Operativa. 28(3):204-219. http://hdl.handle.net/10251/60564 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.seio.es/BEIO/Modeling-population-dynamics-with-random-initial-conditions.html | es_ES |
dc.description.upvformatpinicio | 204 | es_ES |
dc.description.upvformatpfin | 219 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 234327 | es_ES |
dc.contributor.funder | Ministerio de Ciencia y Tecnología | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |