- -

Prediction of the transfer length of prestressing strands with neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prediction of the transfer length of prestressing strands with neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Vargas, José Rocío es_ES
dc.contributor.author FERRI RABASA, FRANCESC J es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2016-02-04T12:06:36Z
dc.date.available 2016-02-04T12:06:36Z
dc.date.issued 2013-08
dc.identifier.issn 1598-8198
dc.identifier.uri http://hdl.handle.net/10251/60624
dc.description.abstract This paper presents a study on the prediction of transfer length of 13 mm seven-wire prestressing steel strand in pretensioned prestressed concrete members with rectangular cross-section including several material properties and design and manufacture parameters. To this end, a carefully selected database consisting of 207 different cases coming from 18 different sources spanning a variety of practical transfer length prediction situations was compiled. 16 single input features and 5 combined input features are analyzed. A widely used feedforward neural regression model was considered as a representative of several machine learning methods that have already been used in the engineering field. Classical multiple linear regression was also considered in order to comparatively assess performance and robustness in this context. The results show that the implemented model has good prediction and generalization capacity when it is used on large input data sets of practical interest from the engineering point of view. In particular, a neural model is proposed -using only 4 hidden units and 10 input variables- which significantly reduces in 30% and 60% the errors in transfer length prediction when using standard linear regression or fixed formulas, respectively. es_ES
dc.description.sponsorship Funding for this study were received from the Spanish Ministry of Science and Innovation and ERDF (Research Project BIA2006-05521, BIA2009-12722, and BIA2011-23602) and from the Spanish Ministry of Education (TIN2009-14205-C04-03 and Consolider Ingenio 2010 CSD2007-00018), as well as the European Community with the FEDER funds. en_EN
dc.language Inglés es_ES
dc.publisher Techno-Press es_ES
dc.relation.ispartof Computers and Concrete es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Transfer length es_ES
dc.subject Prestressing strand es_ES
dc.subject Prestressed concrete es_ES
dc.subject Neural networks es_ES
dc.subject Machine learning es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Prediction of the transfer length of prestressing strands with neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.12989/cac.2013.12.2.187
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIA2006-05521/ES/ESTUDIO TEORICO-EXPERIMENTAL DE LA INFLUENCIA DE LOS FENOMENOS DIFERIDOS EN EL COMPORTAMIENTO ADHERENTE DE LAS ARMADURAS PRETESAS EN ELEMENTOS PREFABRICADOS DE HORMIGON/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIA2009-12722/ES/EL HORMIGON DE FIBRAS DE ACERO COMO SUPERACION DEL HORMIGON TRADICIONAL Y SUS PERSPECTIVAS DE FUTURO/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIA2011-23602/ES/DISEÑO EFICIENTE DE ESTRUCTURAS CON HORMIGONES NO CONVENCIONALES BASADOS EN CRITERIOS SOSTENIBLES MULTIOBJETIVO MEDIANTE EL EMPLEO DE TECNICAS DE MINERIA DE DATOS/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14205-C04-03/ES/Tecnicas Interactivas Y Adaptativas Para Sistemas Automaticos De Reconocimiento, Aprendizaje Y Percepcion/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat es_ES
dc.description.bibliographicCitation Martí Vargas, JR.; Ferri Rabasa, FJ.; Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete. 12(2):187-209. https://doi.org/10.12989/cac.2013.12.2.187 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.12989/cac.2013.12.2.187 es_ES
dc.description.upvformatpinicio 187 es_ES
dc.description.upvformatpfin 209 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 246620 es_ES
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Educación y Ciencia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem