- -

Effect of pressure on La-2(WO4)(3) with a modulated scheelite-type structure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of pressure on La-2(WO4)(3) with a modulated scheelite-type structure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sabalisck, N.P. es_ES
dc.contributor.author Lopez Solano, Javier es_ES
dc.contributor.author Guzmán-Afonso, C. es_ES
dc.contributor.author Santamaría Pérez, David es_ES
dc.contributor.author González-Silgo, C. es_ES
dc.contributor.author Mújica, Andrés es_ES
dc.contributor.author Muñoz, Alfonso es_ES
dc.contributor.author Rodríguez Hernández, Plácida es_ES
dc.contributor.author Radescu, Silvana es_ES
dc.contributor.author Vendrell, X. es_ES
dc.contributor.author Mestres, L. es_ES
dc.contributor.author Sans Tresserras, Juan Ángel es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.date.accessioned 2016-02-05T13:10:30Z
dc.date.available 2016-02-05T13:10:30Z
dc.date.issued 2014-05-27
dc.identifier.issn 0163-1829
dc.identifier.uri http://hdl.handle.net/10251/60663
dc.description.abstract We have studied the effect of pressure on the structural and vibrational properties of lanthanum tritungstate La2(WO4)3. This compound crystallizes under ambient conditions in the modulated scheelite-type structure known as the α phase. We have performed x-ray diffraction and Raman scattering measurements up to a pressure of 20 GPa, as well as ab initio calculations within the framework of the density functional theory. Up to 5 GPa, the three methods provide a similar picture of the evolution under pressure of α-La2(WO4)3. At 5 GPa, we begin to observe some structural changes, and above 6 GPa we find that the x-ray patterns cannot be indexed as a single phase. However, we find that a mixture of two phases with C2/c symmetry accounts for all diffraction peaks. Our ab initio study confirms the existence of several C2/c structures, which are very close in energy in this compression range. According to our measurements, a state with medium-range order appears at pressures above 9 and 11 GPa, from x-ray diffraction and Raman experiments, respectively. Based upon our theoretical calculations we propose several high-pressure candidates with high cationic coordinations at these pressures. The compound evolves into a partially amorphous phase at pressures above 20 GPa. es_ES
dc.description.sponsorship We acknowledge the financial support of the Spanish Ministerio de Economia y Competitividad under Grants MAT2010-21270-C04-02/03/04, CTQ2009-14596-C02-01, CSD2007-00045 and the Comunidad de Madrid and European Social Fund S2009/PPQ-1551-4161893. Access to the MALTA Cluster Computer (Universidad de Oviedo), the Atlante Super-computer (Instituto Tecnologico de Canarias, Red Espanola de Supercomputacion), and the MALTA Xcalibur Diffractometer (Universidad Complutense de Madrid) is gratefully acknowledged. C. G. A. wishes to thank the Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion, and the European Social Fund of the Gobierno de Canarias for a fellowship. J.A.S. acknowledges financial support through the Juan de la Cierva fellowship program. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B (Condensed Matter) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Induced phase-transitions es_ES
dc.subject Augmented-wave method es_ES
dc.subject Eu binary oxides es_ES
dc.subject Crystal stability es_ES
dc.subject X-ray es_ES
dc.subject Amorphization es_ES
dc.subject Awo(4) es_ES
dc.subject Raman es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effect of pressure on La-2(WO4)(3) with a modulated scheelite-type structure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.89.174112
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-02/ES/SINTESIS Y CARACTERIZACION DE MATERIALES CON IONES LUMINESCENTES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-14596-C02-01/ES/Compresibilidad de Materiales//ES/Compresibilidad de Materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Sabalisck, N.; Lopez Solano, J.; Guzmán-Afonso, C.; Santamaría Pérez, D.; González-Silgo, C.; Mújica, A.; Muñoz, A.... (2014). Effect of pressure on La-2(WO4)(3) with a modulated scheelite-type structure. Physical Review B (Condensed Matter). 89:1741121-17411211. https://doi.org/10.1103/PhysRevB.89.174112 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.89.174112 es_ES
dc.description.upvformatpinicio 1741121 es_ES
dc.description.upvformatpfin 17411211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.relation.senia 279430 es_ES
dc.contributor.funder Gobierno de la Comunidad de Madrid es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Maczka, M., Souza Filho, A. G., Paraguassu, W., Freire, P. T. C., Mendes Filho, J., & Hanuza, J. (2012). Pressure-induced structural phase transitions and amorphization in selected molybdates and tungstates. Progress in Materials Science, 57(7), 1335-1381. doi:10.1016/j.pmatsci.2012.01.001 es_ES
dc.description.references Boulahya, K., Parras, M., & González-Calbet, J. M. (2005). A Structural Study of the Solid Solution Eu2(Mo1-xWx)3O12. Zeitschrift für anorganische und allgemeine Chemie, 631(11), 1988-1990. doi:10.1002/zaac.200570039 es_ES
dc.description.references Jeitschko, W. (1973). Crystal structure of La2(MoO4)3, a new ordered defect Scheelite type. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 29(10), 2074-2081. doi:10.1107/s0567740873006138 es_ES
dc.description.references Jeitschko, W. (1972). A comprehensive X-ray study of the ferroelectric–ferroelastic and paraelectric–paraelastic phases of Gd2(MoO4)3. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(1), 60-76. doi:10.1107/s0567740872001876 es_ES
dc.description.references Evans, J. S. O., Mary, T. A., & Sleight, A. W. (1998). Negative Thermal Expansion in Sc2(WO4)3. Journal of Solid State Chemistry, 137(1), 148-160. doi:10.1006/jssc.1998.7744 es_ES
dc.description.references Guzmán-Afonso, C., González-Silgo, C., González-Platas, J., Torres, M. E., Lozano-Gorrín, A. D., Sabalisck, N., … Rodríguez-Carvajal, J. (2011). Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates. Journal of Physics: Condensed Matter, 23(32), 325402. doi:10.1088/0953-8984/23/32/325402 es_ES
dc.description.references Jayaraman, A., Sharma, S. K., Wang, Z., & Wang, S. Y. (1997). Pressure-induced amorphization in the α-phase of Nd2(MoO4)3 and Tb2(MoO4)3. Solid State Communications, 101(4), 237-241. doi:10.1016/s0038-1098(96)00587-x es_ES
dc.description.references Lucazeau, G., Le Bacq, O., Pasturel, A., Bouvier, P., & Pagnier, T. (2011). High-pressure polarized Raman spectra of Gd2(MoO4)3: phase transitions and amorphization. Journal of Raman Spectroscopy, 42(3), 452-460. doi:10.1002/jrs.2731 es_ES
dc.description.references Le Bacq, O., Machon, D., Testemale, D., & Pasturel, A. (2011). Pressure-induced amorphization mechanism in Eu2(MoO4)3. Physical Review B, 83(21). doi:10.1103/physrevb.83.214101 es_ES
dc.description.references Machon, D., Dmitriev, V. P., Sinitsyn, V. V., & Lucazeau, G. (2004). Eu2(MoO4)3single crystal at high pressure: Structural phase transitions and amorphization probed by fluorescence spectroscopy. Physical Review B, 70(9). doi:10.1103/physrevb.70.094117 es_ES
dc.description.references Bandiello, E., Errandonea, D., Martinez-Garcia, D., Santamaria-Perez, D., & Manjón, F. J. (2012). Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4. Physical Review B, 85(2). doi:10.1103/physrevb.85.024108 es_ES
dc.description.references Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 es_ES
dc.description.references Pickard, C. J., & Needs, R. J. (2011). Ab initiorandom structure searching. Journal of Physics: Condensed Matter, 23(5), 053201. doi:10.1088/0953-8984/23/5/053201 es_ES
dc.description.references Depero, L. E., & Sangaletti, L. (1997). Cation Sublattice and Coordination Polyhedra inABO4Type of Structures. Journal of Solid State Chemistry, 129(1), 82-91. doi:10.1006/jssc.1996.7234 es_ES
dc.description.references Brown, I. D. (2006). The Chemical Bond in Inorganic Chemistry. doi:10.1093/acprof:oso/9780199298815.001.0001 es_ES
dc.description.references Kresse, G., Furthmüller, J., & Hafner, J. (1995). Ab initioForce Constant Approach to Phonon Dispersion Relations of Diamond and Graphite. Europhysics Letters (EPL), 32(9), 729-734. doi:10.1209/0295-5075/32/9/005 es_ES
dc.description.references Alfè, D. (2009). PHON: A program to calculate phonons using the small displacement method. Computer Physics Communications, 180(12), 2622-2633. doi:10.1016/j.cpc.2009.03.010 es_ES
dc.description.references Sabalisck, N., Mestres, L., Vendrell, X., Cerdeiras, E., Santamaría, D., Lavin, V., … Guzman-Afonso, M. C. (2011). Amorphization in rare earth tungstates with modulated scheelite-type structure under pressure. Acta Crystallographica Section A Foundations of Crystallography, 67(a1), C504-C505. doi:10.1107/s0108767311087228 es_ES
dc.description.references Logvinovich, D., Arakcheeva, A., Pattison, P., Eliseeva, S., Tomeš, P., Marozau, I., & Chapuis, G. (2010). Crystal Structure and Optical and Magnetic Properties of Pr2(MoO4)3. Inorganic Chemistry, 49(4), 1587-1594. doi:10.1021/ic9019876 es_ES
dc.description.references Garg, N., Murli, C., Tyagi, A. K., & Sharma, S. M. (2005). Phase transitions inSc2(WO4)3under high pressure. Physical Review B, 72(6). doi:10.1103/physrevb.72.064106 es_ES
dc.description.references Belsky, A., Hellenbrandt, M., Karen, V. L., & Luksch, P. (2002). New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallographica Section B Structural Science, 58(3), 364-369. doi:10.1107/s0108768102006948 es_ES
dc.description.references Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551 es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 es_ES
dc.description.references Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 es_ES
dc.description.references Manjón, F. J., Errandonea, D., Garro, N., Pellicer-Porres, J., Rodríguez-Hernández, P., Radescu, S., … Muñoz, A. (2006). Lattice dynamics study of scheelite tungstates under high pressure I.BaWO4. Physical Review B, 74(14). doi:10.1103/physrevb.74.144111 es_ES
dc.description.references Manjon, F. J., Errandonea, D., Garro, N., Pellicer-Porres, J., López-Solano, J., Rodríguez-Hernández, P., … Muñoz, A. (2006). Lattice dynamics study of scheelite tungstates under high pressure II.PbWO4. Physical Review B, 74(14). doi:10.1103/physrevb.74.144112 es_ES
dc.description.references Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224 es_ES
dc.description.references Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162 es_ES
dc.description.references Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). Crystal structure of HgGa2Se4 under compression. Materials Research Bulletin, 48(6), 2128-2133. doi:10.1016/j.materresbull.2013.02.037 es_ES
dc.description.references Errandonea, D., Pellicer-Porres, J., Manjón, F. J., Segura, A., Ferrer-Roca, C., Kumar, R. S., … Aquilanti, G. (2006). Determination of the high-pressure crystal structure ofBaWO4andPbWO4. Physical Review B, 73(22). doi:10.1103/physrevb.73.224103 es_ES
dc.description.references López-Solano, J., Rodríguez-Hernández, P., Radescu, S., Mujica, A., Muñoz, A., Errandonea, D., … Aquilanti, G. (2007). Crystal stability and pressure-induced phase transitions in scheelite AWO4 (A = Ca, Sr, Ba, Pb, Eu) binary oxides. I: A review of recentab initio calculations, ADXRD, XANES, and Raman studies. physica status solidi (b), 244(1), 325-330. doi:10.1002/pssb.200672559 es_ES
dc.description.references Manjón, F. J., Errandonea, D., López-Solano, J., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Aquilanti, G. (2007). Crystal stability and pressure-induced phase transitions in scheelite AWO4 (A = Ca, Sr, Ba, Pb, Eu) binary oxides. II: Towards a systematic understanding. physica status solidi (b), 244(1), 295-302. doi:10.1002/pssb.200672588 es_ES
dc.description.references López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., & Manjón, F. J. (2006). Theoretical study of theYLiF4phase transitions under pressure. Physical Review B, 73(9). doi:10.1103/physrevb.73.094117 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem