- -

The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations

Mostrar el registro completo del ítem

Ponz Tienda, JL.; Pellicer Armiñana, E.; Benlloch Marco, J.; Andrés Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer-Aided Civil and Infrastructure Engineering. 30(11):872-891. doi:10.1111/mice.12166

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60664

Ficheros en el ítem

Metadatos del ítem

Título: The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations
Autor: Ponz Tienda, José Luis Pellicer Armiñana, Eugenio Benlloch Marco, Javier Andrés Romano, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Fecha difusión:
Resumen:
In scheduling, estimations are affected by the imprecision of limited information on future events, and the reduction in the number and level of detail of activities. Overlapping of processes and activities requires ...[+]
Palabras clave: Project Scheduling Problem , Fuzzy Heuristic Model , Generalized Precedence Relations , Project Management , Activity Splitting , Process Flow , Reverse Criticality
Derechos de uso: Reserva de todos los derechos
Fuente:
Computer-Aided Civil and Infrastructure Engineering. (issn: 1093-9687 ) (eissn: 1467-8667 )
DOI: 10.1111/mice.12166
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1111/mice.12166
Agradecimientos:
This research was supported by the FAPA program of Universidad de Los Andes, Colombia. The authors would like to thank the research group of Construction Engineering and Management (INgeco) of Universidad de Los Andes, and ...[+]
Tipo: Artículo

References

Adeli, H., & Park, H. S. (1995). Optimization of space structures by neural dynamics. Neural Networks, 8(5), 769-781. doi:10.1016/0893-6080(95)00026-v

Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)

Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18) [+]
Adeli, H., & Park, H. S. (1995). Optimization of space structures by neural dynamics. Neural Networks, 8(5), 769-781. doi:10.1016/0893-6080(95)00026-v

Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Journal of Construction Engineering and Management, 123(4), 450-458. doi:10.1061/(asce)0733-9364(1997)123:4(450)

Adeli, H., & Wu, M. (1998). Regularization Neural Network for Construction Cost Estimation. Journal of Construction Engineering and Management, 124(1), 18-24. doi:10.1061/(asce)0733-9364(1998)124:1(18)

Alarcón, L. F., Ashley, D. B., de Hanily, A. S., Molenaar, K. R., & Ungo, R. (2011). Risk Planning and Management for the Panama Canal Expansion Program. Journal of Construction Engineering and Management, 137(10), 762-771. doi:10.1061/(asce)co.1943-7862.0000317

Ammar, M. A. (2013). LOB and CPM Integrated Method for Scheduling Repetitive Projects. Journal of Construction Engineering and Management, 139(1), 44-50. doi:10.1061/(asce)co.1943-7862.0000569

Arditi, D., & Bentotage, S. N. (1996). System for Scheduling Highway Construction Projects. Computer-Aided Civil and Infrastructure Engineering, 11(2), 123-139. doi:10.1111/j.1467-8667.1996.tb00316.x

Bai, L., Yan, L., & Ma, Z. M. (2014). Querying fuzzy spatiotemporal data using XQuery. Integrated Computer-Aided Engineering, 21(2), 147-162. doi:10.3233/ica-130454

Ballesteros-Pérez, P., González-Cruz, M. C., Cañavate-Grimal, A., & Pellicer, E. (2013). Detecting abnormal and collusive bids in capped tendering. Automation in Construction, 31, 215-229. doi:10.1016/j.autcon.2012.11.036

Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199-240. doi:10.1007/bf02283745

Bianco, L., & Caramia, M. (2011). Minimizing the completion time of a project under resource constraints and feeding precedence relations: a Lagrangian relaxation based lower bound. 4OR, 9(4), 371-389. doi:10.1007/s10288-011-0168-6

Bonnal, P., Gourc, D., & Lacoste, G. (2004). Where Do We Stand with Fuzzy Project Scheduling? Journal of Construction Engineering and Management, 130(1), 114-123. doi:10.1061/(asce)0733-9364(2004)130:1(114)

Brunelli, M., & Mezei, J. (2013). How different are ranking methods for fuzzy numbers? A numerical study. International Journal of Approximate Reasoning, 54(5), 627-639. doi:10.1016/j.ijar.2013.01.009

Buckley, J. J., & Eslami, E. (2002). An Introduction to Fuzzy Logic and Fuzzy Sets. doi:10.1007/978-3-7908-1799-7

Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10), 1096-1104. doi:10.1061/(asce)0733-9364(2009)135:10(1096)

Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in pert. Fuzzy Sets and Systems, 5(1), 11-19. doi:10.1016/0165-0114(81)90030-0

In Seong Chang, Yasuhiro Tsujimura, Mitsuo Gen, & Tatsumi Tozawa. (1995). An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets and Systems, 76(3), 277-288. doi:10.1016/0165-0114(94)00385-4

Chen, C.-T., & Huang, S.-F. (2007). Applying fuzzy method for measuring criticality in project network. Information Sciences, 177(12), 2448-2458. doi:10.1016/j.ins.2007.01.035

Shyi-Ming Chen, & Tao-Hsing Chang. (2001). Finding multiple possible critical paths using fuzzy PERT. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 31(6), 930-937. doi:10.1109/3477.969496

Damci, A., Arditi, D., & Polat, G. (2013). Resource Leveling in Line-of-Balance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 28(9), 679-692. doi:10.1111/mice.12038

Dell’Orco, M., & Mellano, M. (2013). A New User-Oriented Index, Based on a Fuzzy Inference System, for Quality Evaluation of Rural Roads. Computer-Aided Civil and Infrastructure Engineering, 28(8), 635-647. doi:10.1111/mice.12021

Deng, H. (2014). Comparing and ranking fuzzy numbers using ideal solutions. Applied Mathematical Modelling, 38(5-6), 1638-1646. doi:10.1016/j.apm.2013.09.012

De Reyck, B., & Herroelen, willy. (1998). A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 111(1), 152-174. doi:10.1016/s0377-2217(97)00305-6

De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556. doi:10.1016/s0377-2217(99)00151-4

Dubois, D., Fargier, H., & Galvagnon, V. (2003). On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research, 147(2), 266-280. doi:10.1016/s0377-2217(02)00560-x

Elmaghraby, S. E., & Kamburowski, J. (1992). The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs). Management Science, 38(9), 1245-1263. doi:10.1287/mnsc.38.9.1245

Fondahl , J. W. 1961 A Non-Computer Approach to the Critical Path Method for the Construction Industry

Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434

Gil-Aluja, J. (2004). Fuzzy Sets in the Management of Uncertainty. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39699-4

Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-5951-8

Harris, R. B., & Ioannou, P. G. (1998). Scheduling Projects with Repeating Activities. Journal of Construction Engineering and Management, 124(4), 269-278. doi:10.1061/(asce)0733-9364(1998)124:4(269)

Hejducki, Z. (2004). Sequencing problems in methods of organising construction processes. Engineering, Construction and Architectural Management, 11(1), 20-32. doi:10.1108/09699980410512638

Hebert, J. E., & Deckro, R. F. (2011). Combining contemporary and traditional project management tools to resolve a project scheduling problem. Computers & Operations Research, 38(1), 21-32. doi:10.1016/j.cor.2009.12.004

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002

IBM 1968

Jahani, E., Muhanna, R. L., Shayanfar, M. A., & Barkhordari, M. A. (2013). Reliability Assessment with Fuzzy Random Variables Using Interval Monte Carlo Simulation. Computer-Aided Civil and Infrastructure Engineering, 29(3), 208-220. doi:10.1111/mice.12028

Karim, A., & Adeli, H. (1999). OO Information Model for Construction Project Management. Journal of Construction Engineering and Management, 125(5), 361-367. doi:10.1061/(asce)0733-9364(1999)125:5(361)

Karim, A., & Adeli, H. (1999). CONSCOM: An OO Construction Scheduling and Change Management System. Journal of Construction Engineering and Management, 125(5), 368-376. doi:10.1061/(asce)0733-9364(1999)125:5(368)

KARIM, A., & ADELI, H. (1999). A new generation software for construction scheduling and management. Engineering, Construction and Architectural Management, 6(4), 380-390. doi:10.1108/eb021126

Kim, S.-G. (2012). CPM Schedule Summarizing Function of the Beeline Diagramming Method. Journal of Asian Architecture and Building Engineering, 11(2), 367-374. doi:10.3130/jaabe.11.367

Kis, T. (2005). A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Mathematical Programming, 103(3), 515-539. doi:10.1007/s10107-004-0551-6

Kolisch, R., & Sprecher, A. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216. doi:10.1016/s0377-2217(96)00170-1

Krishnan, V., Eppinger, S. D., & Whitney, D. E. (1997). A Model-Based Framework to Overlap Product Development Activities. Management Science, 43(4), 437-451. doi:10.1287/mnsc.43.4.437

LEACHMAN, R. C., DTNCERLER, A., & KIM, S. (1990). Resource-Constrained Scheduling of Projects with Variable-Intensity Activities. IIE Transactions, 22(1), 31-40. doi:10.1080/07408179008964155

Lim, T.-K., Yi, C.-Y., Lee, D.-E., & Arditi, D. (2014). Concurrent Construction Scheduling Simulation Algorithm. Computer-Aided Civil and Infrastructure Engineering, 29(6), 449-463. doi:10.1111/mice.12073

Long, L. D., & Ohsato, A. (2008). Fuzzy critical chain method for project scheduling under resource constraints and uncertainty. International Journal of Project Management, 26(6), 688-698. doi:10.1016/j.ijproman.2007.09.012

Lootsma, F. A. (1989). Stochastic and fuzzy Pert. European Journal of Operational Research, 43(2), 174-183. doi:10.1016/0377-2217(89)90211-7

Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a Technique for Research and Development Program Evaluation. Operations Research, 7(5), 646-669. doi:10.1287/opre.7.5.646

Maravas, A., & Pantouvakis, J.-P. (2011). Fuzzy Repetitive Scheduling Method for Projects with Repeating Activities. Journal of Construction Engineering and Management, 137(7), 561-564. doi:10.1061/(asce)co.1943-7862.0000319

PONZ TIENDA, J. L., BENLLOCH MARCO, J., ANDRÉS ROMANO, C., & SENABRE, D. (2011). Un algoritmo matricial RUPSP / GRUPSP «sin interrupción» para la planificación de la producción bajo metodología Lean Construction basado en procesos productivos. Revista de la construcción, 10(2), 90-103. doi:10.4067/s0718-915x2011000200009

Ponz-Tienda, J. L., Pellicer, E., & Yepes, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. Journal of Zhejiang University SCIENCE A, 13(1), 56-68. doi:10.1631/jzus.a1100160

Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161-172. doi:10.1016/j.autcon.2012.10.003

Prade, H. (1979). Using fuzzy set theory in a scheduling problem: A case study. Fuzzy Sets and Systems, 2(2), 153-165. doi:10.1016/0165-0114(79)90022-8

Quintanilla, S., Pérez, Á., Lino, P., & Valls, V. (2012). Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres. European Journal of Operational Research, 219(1), 59-72. doi:10.1016/j.ejor.2011.12.018

Rommelfanger, H. J. (1994). Network analysis and information flow in fuzzy environment. Fuzzy Sets and Systems, 67(1), 119-128. doi:10.1016/0165-0114(94)90212-7

Senouci, A. B., & Adeli, H. (2001). Resource Scheduling Using Neural Dynamics Model of Adeli and Park. Journal of Construction Engineering and Management, 127(1), 28-34. doi:10.1061/(asce)0733-9364(2001)127:1(28)

Seppänen, O., Evinger, J., & Mouflard, C. (2014). Effects of the location-based management system on production rates and productivity. Construction Management and Economics, 32(6), 608-624. doi:10.1080/01446193.2013.853881

Shi, Q., & Blomquist, T. (2012). A new approach for project scheduling using fuzzy dependency structure matrix. International Journal of Project Management, 30(4), 503-510. doi:10.1016/j.ijproman.2011.11.003

Srour, I. M., Abdul-Malak, M.-A. U., Yassine, A. A., & Ramadan, M. (2013). A methodology for scheduling overlapped design activities based on dependency information. Automation in Construction, 29, 1-11. doi:10.1016/j.autcon.2012.08.001

Valls, V., & Lino, P. (2001). Annals of Operations Research, 102(1/4), 17-37. doi:10.1023/a:1010941729204

Valls, V., Mart�, R., & Lino, P. (1996). A heuristic algorithm for project scheduling with splitting allowed. Journal of Heuristics, 2(1), 87-104. doi:10.1007/bf00226294

Wang, Y.-M., Yang, J.-B., Xu, D.-L., & Chin, K.-S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919-926. doi:10.1016/j.fss.2005.11.006

Wiest, J. D. (1981). Precedence diagramming method: Some unusual characteristics and their implications for project managers. Journal of Operations Management, 1(3), 121-130. doi:10.1016/0272-6963(81)90015-2

Yan, L., & Ma, Z. M. (2013). Conceptual design of object-oriented databases for fuzzy engineering information modeling. Integrated Computer-Aided Engineering, 20(2), 183-197. doi:10.3233/ica-130427

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x

Zeng, Z., Xu, J., Wu, S., & Shen, M. (2014). Antithetic Method-Based Particle Swarm Optimization for a Queuing Network Problem with Fuzzy Data in Concrete Transportation Systems. Computer-Aided Civil and Infrastructure Engineering, 29(10), 771-800. doi:10.1111/mice.12111

Zhang, X., Li, Y., Zhang, S., & Schlick, C. M. (2013). Modelling and simulation of the task scheduling behavior in collaborative product development process. Integrated Computer-Aided Engineering, 20(1), 31-44. doi:10.3233/ica-120417

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem