Mostrar el registro sencillo del ítem
dc.contributor.author | González Albuixech, Vicente Francisco | es_ES |
dc.contributor.author | Giner Maravilla, Eugenio | es_ES |
dc.contributor.author | Tarancón Caro, José Enrique | es_ES |
dc.contributor.author | Fuenmayor Fernández, Francisco Javier | es_ES |
dc.contributor.author | Gravouil, A. | es_ES |
dc.date.accessioned | 2016-02-08T08:22:26Z | |
dc.date.available | 2016-02-08T08:22:26Z | |
dc.date.issued | 2013-05-25 | |
dc.identifier.issn | 0029-5981 | |
dc.identifier.uri | http://hdl.handle.net/10251/60687 | |
dc.description.abstract | The aim of this study is the analysis of the convergence rates achieved with domain energy integrals for the computation of the stress intensity factors (SIF) when solving 2-D curved crack problems with the extended FEM (XFEM). Domain integrals, specially the J-integral and the interaction integral, are widely used for SIF extraction and provide high accurate estimations with FEMs. The crack description in XFEM is usually realized using level sets. This allows to define a local basis associated with the crack geometry. In this work, the effect of the level set local basis definition on the domain integral has been studied. The usual definition of the interaction integral involves hypotheses that are not fulfilled in generic curved crack problems, and we introduce some modifications to improve the behavior in curved crack analyses. Despite the good accuracy of domain integrals, convergence rates are not always optimal, and convergence to the exact solution cannot be assured for curved cracks. The lack of convergence is associated with the effect of the curvature on the definition of the auxiliary extraction fields. With our modified integral proposal, the optimal convergence rate is achieved by controlling the q-function and the size of the extraction domain. | es_ES |
dc.description.sponsorship | This work has been carried out within the framework of the research projects DPI2007-66995-C03-02 and DPI2010-20990 financed by the Ministerio de Economia y Competitividad. The support of the Generalitat Valenciana, Programme PROMETEO 2012/023 is also acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | International Journal for Numerical Methods in Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SIF | es_ES |
dc.subject | Curved cracks | es_ES |
dc.subject | Domain integrals | es_ES |
dc.subject | Interaction integral | es_ES |
dc.subject | J-integral | es_ES |
dc.subject | Convergence rate | es_ES |
dc.subject | Level set | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nme.4478 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66995-C03-02/ES/MODELADO DEL CRECIMIENTO DE GRIETAS EN PROBLEMAS DE ENTALLAS Y FRETTING MEDIANTE METODOS DE PARTICION DE LA UNIDAD Y MORTAR/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | González Albuixech, VF.; Giner Maravilla, E.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ.; Gravouil, A. (2013). Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method. International Journal for Numerical Methods in Engineering. 94(8):740-757. https://doi.org/10.1002/nme.4478 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/nme.4478 | es_ES |
dc.description.upvformatpinicio | 740 | es_ES |
dc.description.upvformatpfin | 757 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 94 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 250696 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j | es_ES |
dc.description.references | Sukumar, N., Mo�s, N., Moran, B., & Belytschko, T. (2000). Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 48(11), 1549-1570. doi:10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a | es_ES |
dc.description.references | Moës, N., Gravouil, A., & Belytschko, T. (2002). Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model. International Journal for Numerical Methods in Engineering, 53(11), 2549-2568. doi:10.1002/nme.429 | es_ES |
dc.description.references | Gravouil, A., Moës, N., & Belytschko, T. (2002). Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. International Journal for Numerical Methods in Engineering, 53(11), 2569-2586. doi:10.1002/nme.430 | es_ES |
dc.description.references | Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002 | es_ES |
dc.description.references | Huang, R., Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications. International Journal of Solids and Structures, 40(26), 7539-7552. doi:10.1016/j.ijsolstr.2003.08.001 | es_ES |
dc.description.references | Rice, J. R. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 35(2), 379-386. doi:10.1115/1.3601206 | es_ES |
dc.description.references | Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, 27(6), 615-642. doi:10.1016/0013-7944(87)90155-x | es_ES |
dc.description.references | Walters, M. C., Paulino, G. H., & Dodds, R. H. (2005). Interaction integral procedures for 3-D curved cracks including surface tractions. Engineering Fracture Mechanics, 72(11), 1635-1663. doi:10.1016/j.engfracmech.2005.01.002 | es_ES |
dc.description.references | Duflot, M. (2007). A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering, 70(11), 1261-1302. doi:10.1002/nme.1915 | es_ES |
dc.description.references | Osher, S., & Fedkiw, R. P. (2001). Level Set Methods: An Overview and Some Recent Results. Journal of Computational Physics, 169(2), 463-502. doi:10.1006/jcph.2000.6636 | es_ES |
dc.description.references | Nahta, R., & Moran, B. (1993). Domain integrals for axisymmetric interface crack problems. International Journal of Solids and Structures, 30(15), 2027-2040. doi:10.1016/0020-7683(93)90049-d | es_ES |
dc.description.references | Gosz, M., Dolbow, J., & Moran, B. (1998). Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. International Journal of Solids and Structures, 35(15), 1763-1783. doi:10.1016/s0020-7683(97)00132-7 | es_ES |
dc.description.references | Gosz, M., & Moran, B. (2002). An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Engineering Fracture Mechanics, 69(3), 299-319. doi:10.1016/s0013-7944(01)00080-7 | es_ES |
dc.description.references | Sukumar N Element partitioning code in 2-D and 3-D for the extended finite element method 2000 http://dilbert.engr.ucdavis.edu/suku/xfem | es_ES |
dc.description.references | Laborde, P., Pommier, J., Renard, Y., & Salaün, M. (2005). High-order extended finite element method for cracked domains. International Journal for Numerical Methods in Engineering, 64(3), 354-381. doi:10.1002/nme.1370 | es_ES |
dc.description.references | Eshelby, J. D. (1975). The elastic energy-momentum tensor. Journal of Elasticity, 5(3-4), 321-335. doi:10.1007/bf00126994 | es_ES |
dc.description.references | Eriksson, K. (2000). International Journal of Fracture, 106(1), 65-80. doi:10.1023/a:1007646823223 | es_ES |
dc.description.references | Simpson, R., & Trevelyan, J. (2011). Evaluation of J1 and J2 integrals for curved cracks using an enriched boundary element method. Engineering Fracture Mechanics, 78(4), 623-637. doi:10.1016/j.engfracmech.2010.12.006 | es_ES |
dc.description.references | Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J. (2009). Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1), 126-148. doi:10.1002/nme.2402 | es_ES |
dc.description.references | Béchet, E., Minnebo, H., Moës, N., & Burgardt, B. (2005). Improved implementation and robustness study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering, 64(8), 1033-1056. doi:10.1002/nme.1386 | es_ES |
dc.description.references | Stazi, F. L., Budyn, E., Chessa, J., & Belytschko, T. (2003). An extended finite element method with higher-order elements for curved cracks. Computational Mechanics, 31(1-2), 38-48. doi:10.1007/s00466-002-0391-2 | es_ES |
dc.description.references | Chessa, J., Wang, H., & Belytschko, T. (2003). On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 57(7), 1015-1038. doi:10.1002/nme.777 | es_ES |