- -

Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Albuixech, Vicente Francisco es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.contributor.author Tarancón Caro, José Enrique es_ES
dc.contributor.author Fuenmayor Fernández, Francisco Javier es_ES
dc.contributor.author Gravouil, A. es_ES
dc.date.accessioned 2016-02-08T08:22:26Z
dc.date.available 2016-02-08T08:22:26Z
dc.date.issued 2013-05-25
dc.identifier.issn 0029-5981
dc.identifier.uri http://hdl.handle.net/10251/60687
dc.description.abstract The aim of this study is the analysis of the convergence rates achieved with domain energy integrals for the computation of the stress intensity factors (SIF) when solving 2-D curved crack problems with the extended FEM (XFEM). Domain integrals, specially the J-integral and the interaction integral, are widely used for SIF extraction and provide high accurate estimations with FEMs. The crack description in XFEM is usually realized using level sets. This allows to define a local basis associated with the crack geometry. In this work, the effect of the level set local basis definition on the domain integral has been studied. The usual definition of the interaction integral involves hypotheses that are not fulfilled in generic curved crack problems, and we introduce some modifications to improve the behavior in curved crack analyses. Despite the good accuracy of domain integrals, convergence rates are not always optimal, and convergence to the exact solution cannot be assured for curved cracks. The lack of convergence is associated with the effect of the curvature on the definition of the auxiliary extraction fields. With our modified integral proposal, the optimal convergence rate is achieved by controlling the q-function and the size of the extraction domain. es_ES
dc.description.sponsorship This work has been carried out within the framework of the research projects DPI2007-66995-C03-02 and DPI2010-20990 financed by the Ministerio de Economia y Competitividad. The support of the Generalitat Valenciana, Programme PROMETEO 2012/023 is also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof International Journal for Numerical Methods in Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SIF es_ES
dc.subject Curved cracks es_ES
dc.subject Domain integrals es_ES
dc.subject Interaction integral es_ES
dc.subject J-integral es_ES
dc.subject Convergence rate es_ES
dc.subject Level set es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nme.4478
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66995-C03-02/ES/MODELADO DEL CRECIMIENTO DE GRIETAS EN PROBLEMAS DE ENTALLAS Y FRETTING MEDIANTE METODOS DE PARTICION DE LA UNIDAD Y MORTAR/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation González Albuixech, VF.; Giner Maravilla, E.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ.; Gravouil, A. (2013). Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method. International Journal for Numerical Methods in Engineering. 94(8):740-757. https://doi.org/10.1002/nme.4478 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/nme.4478 es_ES
dc.description.upvformatpinicio 740 es_ES
dc.description.upvformatpfin 757 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 250696 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j es_ES
dc.description.references Sukumar, N., Mo�s, N., Moran, B., & Belytschko, T. (2000). Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 48(11), 1549-1570. doi:10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a es_ES
dc.description.references Moës, N., Gravouil, A., & Belytschko, T. (2002). Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model. International Journal for Numerical Methods in Engineering, 53(11), 2549-2568. doi:10.1002/nme.429 es_ES
dc.description.references Gravouil, A., Moës, N., & Belytschko, T. (2002). Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. International Journal for Numerical Methods in Engineering, 53(11), 2569-2586. doi:10.1002/nme.430 es_ES
dc.description.references Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002 es_ES
dc.description.references Huang, R., Sukumar, N., & Prévost, J.-H. (2003). Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications. International Journal of Solids and Structures, 40(26), 7539-7552. doi:10.1016/j.ijsolstr.2003.08.001 es_ES
dc.description.references Rice, J. R. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 35(2), 379-386. doi:10.1115/1.3601206 es_ES
dc.description.references Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, 27(6), 615-642. doi:10.1016/0013-7944(87)90155-x es_ES
dc.description.references Walters, M. C., Paulino, G. H., & Dodds, R. H. (2005). Interaction integral procedures for 3-D curved cracks including surface tractions. Engineering Fracture Mechanics, 72(11), 1635-1663. doi:10.1016/j.engfracmech.2005.01.002 es_ES
dc.description.references Duflot, M. (2007). A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering, 70(11), 1261-1302. doi:10.1002/nme.1915 es_ES
dc.description.references Osher, S., & Fedkiw, R. P. (2001). Level Set Methods: An Overview and Some Recent Results. Journal of Computational Physics, 169(2), 463-502. doi:10.1006/jcph.2000.6636 es_ES
dc.description.references Nahta, R., & Moran, B. (1993). Domain integrals for axisymmetric interface crack problems. International Journal of Solids and Structures, 30(15), 2027-2040. doi:10.1016/0020-7683(93)90049-d es_ES
dc.description.references Gosz, M., Dolbow, J., & Moran, B. (1998). Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. International Journal of Solids and Structures, 35(15), 1763-1783. doi:10.1016/s0020-7683(97)00132-7 es_ES
dc.description.references Gosz, M., & Moran, B. (2002). An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Engineering Fracture Mechanics, 69(3), 299-319. doi:10.1016/s0013-7944(01)00080-7 es_ES
dc.description.references Sukumar N Element partitioning code in 2-D and 3-D for the extended finite element method 2000 http://dilbert.engr.ucdavis.edu/suku/xfem es_ES
dc.description.references Laborde, P., Pommier, J., Renard, Y., & Salaün, M. (2005). High-order extended finite element method for cracked domains. International Journal for Numerical Methods in Engineering, 64(3), 354-381. doi:10.1002/nme.1370 es_ES
dc.description.references Eshelby, J. D. (1975). The elastic energy-momentum tensor. Journal of Elasticity, 5(3-4), 321-335. doi:10.1007/bf00126994 es_ES
dc.description.references Eriksson, K. (2000). International Journal of Fracture, 106(1), 65-80. doi:10.1023/a:1007646823223 es_ES
dc.description.references Simpson, R., & Trevelyan, J. (2011). Evaluation of J1 and J2 integrals for curved cracks using an enriched boundary element method. Engineering Fracture Mechanics, 78(4), 623-637. doi:10.1016/j.engfracmech.2010.12.006 es_ES
dc.description.references Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J. (2009). Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1), 126-148. doi:10.1002/nme.2402 es_ES
dc.description.references Béchet, E., Minnebo, H., Moës, N., & Burgardt, B. (2005). Improved implementation and robustness study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering, 64(8), 1033-1056. doi:10.1002/nme.1386 es_ES
dc.description.references Stazi, F. L., Budyn, E., Chessa, J., & Belytschko, T. (2003). An extended finite element method with higher-order elements for curved cracks. Computational Mechanics, 31(1-2), 38-48. doi:10.1007/s00466-002-0391-2 es_ES
dc.description.references Chessa, J., Wang, H., & Belytschko, T. (2003). On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 57(7), 1015-1038. doi:10.1002/nme.777 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem