- -

Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delalieux, Sthephanie es_ES
dc.contributor.author Zarco-Tejada, Pablo J. es_ES
dc.contributor.author Tits, Laurent es_ES
dc.contributor.author Jiménez Bello, Miguel Ángel es_ES
dc.contributor.author INTRIGLIOLO MOLINA, DIEGO SEBASTIANO es_ES
dc.contributor.author Somers, Ben es_ES
dc.date.accessioned 2016-02-11T08:01:34Z
dc.date.available 2016-02-11T08:01:34Z
dc.date.issued 2014-06
dc.identifier.issn 1939-1404
dc.identifier.uri http://hdl.handle.net/10251/60797
dc.description "© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” Upon publication, authors are asked to include either a link to the abstract of the published article in IEEE Xplore®, or the article’s Digital Object Identifier (DOI). es_ES
dc.description.abstract Many applications require a timely acquisition of high spatial and spectral resolution remote sensing data. This is often not achievable since spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while airborne sensors mounted on a manned aircraft are too expensive to acquire a high temporal resolution. This gap between information needs and data availability inspires research on using Remotely Piloted Aircraft Systems (RPAS) to capture the desired high spectral and spatial information, furthermore providing temporal flexibility. Present hyperspectral imagers on board lightweight RPAS are still rare, due to the operational complexity, sensor weight, and instability. This paper looks into the use of a hyperspectral-hyperspatial fusion technique for an improved biophysical parameter retrieval and physiological assessment in agricultural crops. First, a biophysical parameter extraction study is performed on a simulated citrus orchard. Subsequently, the unmixing-based fusion is applied on a real test case in commercial citrus orchards with discontinuous canopies, in which a more efficient and accurate estimation of water stress is achieved by fusing thermal hyperspatial and hyperspectral (APEX) imagery. Narrowband reflectance indices that have proven their effectiveness as previsual indicators of water stress, such as the Photochemical Reflectance Index (PRI), show a significant increase in tree water-stress detection when applied on the fused dataset compared to the original hyperspectral APEX dataset (R-2 = 0.62, p < 0.001 vs R-2 = 0.21, p > 0.1). Maximal R-2 values of 0.93 and 0.86 are obtained by a linear relationship between the vegetation index and the resp., water and chlorophyll, parameter content maps. es_ES
dc.description.sponsorship This work was supported in part by the Belgian Science Policy Office in the frame of the Stereo II program (Hypermix project-SR/00/141), in part by the project Chameleon of the Flemish Agency for Innovation by Science and Technology (IWT), and in part by the Spanish Ministry of Science and Education (MEC) for the projects AGL2012-40053-C03-01 and CONSOLIDER RIDECO (CSD2006-67). The European Facility for Airborne Research EUFAR (www.eufar.net) funded the flight campaign (Transnational Access Project 'Hyper-Stress'). The work of D. S. Intrigliolo was supported by the Spanish Ministry of Economy and Competitiveness program "Ramon y Cajal." en_EN
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation.ispartof IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus es_ES
dc.subject Fusion es_ES
dc.subject Hyperspatial es_ES
dc.subject Hyperspectral es_ES
dc.subject Thermal es_ES
dc.subject Unmixing es_ES
dc.subject Water stress es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JSTARS.2014.2330352
dc.relation.projectID info:eu-repo/grantAgreement/BELSPO//SR%2F00%2F141/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2006-00067/ES/Programa integral de ahorro y mejora en la productividad del agua de riego en la horticultura española/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-40053-C03-01/ES/METODOS DE ESTIMACION DE FLUORESCENCIA CLOROFILICA EN OLIVAR, NARANJO Y VID A PARTIR DE MICROSENSORES HIPERESPECTRALES A BORDO DE UAVS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Delalieux, S.; Zarco-Tejada, PJ.; Tits, L.; Jiménez Bello, MÁ.; Intrigliolo Molina, DS.; Somers, B. (2014). Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 7(6):2571-2582. https://doi.org/10.1109/JSTARS.2014.2330352 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/JSTARS.2014.2330352 es_ES
dc.description.upvformatpinicio 2571 es_ES
dc.description.upvformatpfin 2582 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 280339 es_ES
dc.contributor.funder European Facility for Airborne Research es_ES
dc.contributor.funder Belgian Federal Science Policy Office es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Agency for Innovation by Science and Technology, Flanders es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem