- -

A kernel-based approach for fault diagnosis in batch processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A kernel-based approach for fault diagnosis in batch processes

Mostrar el registro completo del ítem

Vitale, R.; De Noord, OE.; Ferrer, A. (2014). A kernel-based approach for fault diagnosis in batch processes. Journal of Chemometrics. 28(8):697-707. doi:10.1002/cem.2629

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60811

Ficheros en el ítem

Metadatos del ítem

Título: A kernel-based approach for fault diagnosis in batch processes
Autor: Vitale, R. de Noord, O. E. Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
This article explores the potential of kernel-based techniques for discriminating on-specification and off-specification batch runs, combining kernel-partial least squares discriminant analysis and three common approaches ...[+]
Palabras clave: Kernel-based methods , Pseudo-sample projection , Batch processes , Fault discrimination , Fault diagnosis
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Chemometrics. (issn: 0886-9383 ) (eissn: 1099-128X )
DOI: 10.1002/cem.2629
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/cem.2629
Tipo: Artículo

References

Cao, D.-S., Liang, Y.-Z., Xu, Q.-S., Hu, Q.-N., Zhang, L.-X., & Fu, G.-H. (2011). Exploring nonlinear relationships in chemical data using kernel-based methods. Chemometrics and Intelligent Laboratory Systems, 107(1), 106-115. doi:10.1016/j.chemolab.2011.02.004

Walczak, B., & Massart, D. L. (1996). The Radial Basis Functions — Partial Least Squares approach as a flexible non-linear regression technique. Analytica Chimica Acta, 331(3), 177-185. doi:10.1016/0003-2670(96)00202-4

Walczak, B., & Massart, D. L. (1996). Application of Radial Basis Functions — Partial Least Squares to non-linear pattern recognition problems: diagnosis of process faults. Analytica Chimica Acta, 331(3), 187-193. doi:10.1016/0003-2670(96)00206-1 [+]
Cao, D.-S., Liang, Y.-Z., Xu, Q.-S., Hu, Q.-N., Zhang, L.-X., & Fu, G.-H. (2011). Exploring nonlinear relationships in chemical data using kernel-based methods. Chemometrics and Intelligent Laboratory Systems, 107(1), 106-115. doi:10.1016/j.chemolab.2011.02.004

Walczak, B., & Massart, D. L. (1996). The Radial Basis Functions — Partial Least Squares approach as a flexible non-linear regression technique. Analytica Chimica Acta, 331(3), 177-185. doi:10.1016/0003-2670(96)00202-4

Walczak, B., & Massart, D. L. (1996). Application of Radial Basis Functions — Partial Least Squares to non-linear pattern recognition problems: diagnosis of process faults. Analytica Chimica Acta, 331(3), 187-193. doi:10.1016/0003-2670(96)00206-1

Gasteiger, J., & Zupan, J. (1993). Neural Networks in Chemistry. Angewandte Chemie International Edition in English, 32(4), 503-527. doi:10.1002/anie.199305031

Li, H., Liang, Y., & Xu, Q. (2009). Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems, 95(2), 188-198. doi:10.1016/j.chemolab.2008.10.007

Williams, P. (2009). Influence of Water on Prediction of Composition and Quality Factors: The Aquaphotomics of Low Moisture Agricultural Materials. Journal of Near Infrared Spectroscopy, 17(6), 315-328. doi:10.1255/jnirs.862

Tan, C., & Li, M. (2008). Mutual information-induced interval selection combined with kernel partial least squares for near-infrared spectral calibration. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(4), 1266-1273. doi:10.1016/j.saa.2008.03.033

Embrechts, M. J., & Ekins, S. (2006). Classification of Metabolites with Kernel-Partial Least Squares (K-PLS). Drug Metabolism and Disposition, 35(3), 325-327. doi:10.1124/dmd.106.013185

Arenas-Garcia, J., & Camps-Valls, G. (2008). Efficient Kernel Orthonormalized PLS for Remote Sensing Applications. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 2872-2881. doi:10.1109/tgrs.2008.918765

Sun, R., & Tsung, F. (2003). A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41(13), 2975-2989. doi:10.1080/1352816031000075224

Lee, J.-M., Yoo, C., Choi, S. W., Vanrolleghem, P. A., & Lee, I.-B. (2004). Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 59(1), 223-234. doi:10.1016/j.ces.2003.09.012

Kewley, R. H., Embrechts, M. J., & Breneman, C. (2000). Data strip mining for the virtual design of pharmaceuticals with neural networks. IEEE Transactions on Neural Networks, 11(3), 668-679. doi:10.1109/72.846738

Üstün, B., Melssen, W. J., & Buydens, L. M. C. (2007). Visualisation and interpretation of Support Vector Regression models. Analytica Chimica Acta, 595(1-2), 299-309. doi:10.1016/j.aca.2007.03.023

Krooshof, P. W. T., Üstün, B., Postma, G. J., & Buydens, L. M. C. (2010). Visualization and Recovery of the (Bio)chemical Interesting Variables in Data Analysis with Support Vector Machine Classification. Analytical Chemistry, 82(16), 7000-7007. doi:10.1021/ac101338y

GOWER, J. C., & HARDING, S. A. (1988). Nonlinear biplots. Biometrika, 75(3), 445-455. doi:10.1093/biomet/75.3.445

Postma, G. J., Krooshof, P. W. T., & Buydens, L. M. C. (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705(1-2), 123-134. doi:10.1016/j.aca.2011.04.025

Smolinska, A., Blanchet, L., Coulier, L., Ampt, K. A. M., Luider, T., Hintzen, R. Q., … Buydens, L. M. C. (2012). Interpretation and Visualization of Non-Linear Data Fusion in Kernel Space: Study on Metabolomic Characterization of Progression of Multiple Sclerosis. PLoS ONE, 7(6), e38163. doi:10.1371/journal.pone.0038163

Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part I: theoretical discussion. Journal of Chemometrics, 22(5), 299-308. doi:10.1002/cem.1113

Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3

Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888

García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023

Pérez, N. F., Ferré, J., & Boqué, R. (2009). Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chemometrics and Intelligent Laboratory Systems, 95(2), 122-128. doi:10.1016/j.chemolab.2008.09.005

Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L. (1996). Model validation by permutation tests: Applications to variable selection. Journal of Chemometrics, 10(5-6), 521-532. doi:10.1002/(sici)1099-128x(199609)10:5/6<521::aid-cem448>3.0.co;2-j

Quintás, G., Portillo, N., García-Cañaveras, J. C., Castell, J. V., Ferrer, A., & Lahoz, A. (2011). Chemometric approaches to improve PLSDA model outcome for predicting human non-alcoholic fatty liver disease using UPLC-MS as a metabolic profiling tool. Metabolomics, 8(1), 86-98. doi:10.1007/s11306-011-0292-5

Courrieu, P. (2002). Straight monotonic embedding of data sets in Euclidean spaces. Neural Networks, 15(10), 1185-1196. doi:10.1016/s0893-6080(02)00091-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem