- -

Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guacaneme Moreno, Javier Antonio es_ES
dc.contributor.author Gabriel Garcerá es_ES
dc.contributor.author Figueres Amorós, Emilio es_ES
dc.contributor.author Patrao Herrero, Iván es_ES
dc.contributor.author González Medina, Raúl es_ES
dc.date.accessioned 2016-02-12T10:22:16Z
dc.date.available 2016-02-12T10:22:16Z
dc.date.issued 2015-10
dc.identifier.issn 0098-9886
dc.identifier.uri http://hdl.handle.net/10251/60828
dc.description.abstract Bidirectional power flow is needed in many power conversion systems like energy storage systems, regeneration systems, power converters for improvement of the power quality and some DC-DC applications where bidirectional high power conversion and galvanic isolation are required. The dual active bridge (DAB) is an isolated, high voltage ratio DC-DC converter suitable for high power density and high power applications, being a key interface between renewable energy sources and energy storage devices. This paper is focused on the modeling and control design of a DC-DC system with battery storage based on a DAB converter with average current mode control of the output current and output voltage control. The dynamic response of the output voltage to load steps is improved by means of an additional load-current feed-forward control loop. An analytical study of the load-current feed-forward is presented and validated by means of both simulations and experimental results. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness under grant ENE2012-37667-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof International Journal of Circuit Theory and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject DC-DC power conversion es_ES
dc.subject Dual active bridge es_ES
dc.subject Current mode control es_ES
dc.subject Feed-forward es_ES
dc.subject Modeling es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cta.2012
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2012-37667-C02-01/ES/ARQUITECTURAS DE POTENCIA Y CONTROL DE MICRORREDES INTELIGENTES PARA LA GESTION EFICIENTE DE ENERGIA ELECTRICA EN ENTORNOS RESIDENCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Guacaneme Moreno, JA.; Gabriel Garcerá; Figueres Amorós, E.; Patrao Herrero, I.; González Medina, R. (2015). Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward. International Journal of Circuit Theory and Applications. 43(10):1311-1332. https://doi.org/10.1002/cta.2012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cta.2012 es_ES
dc.description.upvformatpinicio 1311 es_ES
dc.description.upvformatpfin 1332 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 277829 es_ES
dc.identifier.eissn 1097-007X
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Vazquez, S., Lukic, S. M., Galvan, E., Franquelo, L. G., & Carrasco, J. M. (2010). Energy Storage Systems for Transport and Grid Applications. IEEE Transactions on Industrial Electronics, 57(12), 3881-3895. doi:10.1109/tie.2010.2076414 es_ES
dc.description.references De Doncker, R. W. A. A., Divan, D. M., & Kheraluwala, M. H. (1991). A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Transactions on Industry Applications, 27(1), 63-73. doi:10.1109/28.67533 es_ES
dc.description.references Kheraluwala, M. N., Gascoigne, R. W., Divan, D. M., & Baumann, E. D. (1992). Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Transactions on Industry Applications, 28(6), 1294-1301. doi:10.1109/28.175280 es_ES
dc.description.references Chang, Y.-H., & Wu, K.-W. (2012). A gain/efficiency-enhanced bidirectional switched-capacitor DC-DC converter. International Journal of Circuit Theory and Applications, 42(5), 468-493. doi:10.1002/cta.1863 es_ES
dc.description.references Li H Liu D Peng FZ Gui-Jia S Small Signal Analysis of A Dual Half Bridge Isolated ZVS Bi-directional DC-DC converter for Electrical Vehicle Applicat 36th IEEE Power Electronics Specialists Conference 2005 2777 2782 es_ES
dc.description.references Chiu, H.-J., Yao, C.-J., & Lo, Y.-K. (2009). A DC/DC converter topology for renewable energy systems. International Journal of Circuit Theory and Applications, 37(3), 485-495. doi:10.1002/cta.475 es_ES
dc.description.references Doishita K Hashiwaki M Aoki T Kawagoe Y Murakami N Highly reliable uninterruptible power supply using a bi-directional converter The 21st International Telecommunication Energy Conference (INTELEC '99), Copenhagen 1999 10.1109/INTLEC.1999.794066 es_ES
dc.description.references Krismer F Biela J Kolar JW A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range 40th IAS Annual Meeting Industry Applications Conference 2005 1 599 606 es_ES
dc.description.references Aggeler D Biela J Inoue S Akagi H Kolar JW Bi-Directional Isolated DC-DC Converter for Next-Generation Power Distribution - Comparison of Converters using Si and SiC Devices Power Conversion Conference-Nago 2007 510 517 es_ES
dc.description.references Krishnamurthy HK Ayyanar R Building Block Converter Module for Universal (AC-DC, DC-AC, DC-DC) Fully Modular Power Conversion Architecture IEEE Power Electronics Specialists Conference 2007 483 489 es_ES
dc.description.references Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. doi:10.1109/mie.2013.2264540 es_ES
dc.description.references Yu, X., She, X., Ni, X., & Huang, A. Q. (2014). System Integration and Hierarchical Power Management Strategy for a Solid-State Transformer Interfaced Microgrid System. IEEE Transactions on Power Electronics, 29(8), 4414-4425. doi:10.1109/tpel.2013.2289374 es_ES
dc.description.references Liserre, M., Sauter, T., & Hung, J. (2010). Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Industrial Electronics Magazine, 4(1), 18-37. doi:10.1109/mie.2010.935861 es_ES
dc.description.references Mi, C., Bai, H., Wang, C., & Gargies, S. (2008). Operation, design and control of dual H-bridge-based isolated bidirectional DC–DC converter. IET Power Electronics, 1(4), 507. doi:10.1049/iet-pel:20080004 es_ES
dc.description.references Friedemann A Krismer F Kolar JW Design of a Minimum Weight Dual Active Bridge Converter for an Airborne Wind Turbine System Proceedings of the 27th Applied Power Electronics Conference and Exposition (APEC) 2012 es_ES
dc.description.references Krismer, F., & Kolar, J. W. (2010). Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application. IEEE Transactions on Industrial Electronics, 57(3), 881-891. doi:10.1109/tie.2009.2025284 es_ES
dc.description.references Hengsi Qin, & Kimball, J. W. (2012). Generalized Average Modeling of Dual Active Bridge DC–DC Converter. IEEE Transactions on Power Electronics, 27(4), 2078-2084. doi:10.1109/tpel.2011.2165734 es_ES
dc.description.references Segaran D McGrath B Holmes DG Adaptive dynamic control of a Bidirectional DC-DC converter IEEE Proceedings Energy Conversion Congress 2010 1442 1449 es_ES
dc.description.references Bai H Mi C Wang C Gargies S The dynamic model and hybrid phase-shift control of a dual-active-bridge converter Proceedings IECON 2008 2840 2845 es_ES
dc.description.references Segaran, D., Holmes, D. G., & McGrath, B. P. (2013). Enhanced Load Step Response for a Bidirectional DC–DC Converter. IEEE Transactions on Power Electronics, 28(1), 371-379. doi:10.1109/tpel.2012.2200505 es_ES
dc.description.references Tang W Lee FC Ridley RB Small-signal modeling of average current-mode control APEC'92. Seventh Annual Conference Proceedings 1992 747 755 es_ES
dc.description.references Kheraluwala MH High-Power High frequency DC-DC converters PhD thesis 1991 es_ES
dc.description.references Fang, C.-C. (2011). Sampled-data poles, zeros, and modeling for current-mode control. International Journal of Circuit Theory and Applications, 41(2), 111-127. doi:10.1002/cta.790 es_ES
dc.description.references Redl, R., & Sokal, N. O. (1986). Near-Optimum Dynamic Regulation of DC-DC Converters Using Feed-Forward of Output Current and Input Voltage with Current-Mode Control. IEEE Transactions on Power Electronics, PE-1(3), 181-192. doi:10.1109/tpel.1986.4766303 es_ES
dc.description.references Qin H Kimball JW Closed-loop control of DC-DC dual active bridge converters driving single-phase inverters IEEE Energy Conversion Congress and Exposition (ECCE) 2012 173 179 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem