Mostrar el registro sencillo del ítem
dc.contributor.author | Guacaneme Moreno, Javier Antonio | es_ES |
dc.contributor.author | Gabriel Garcerá | es_ES |
dc.contributor.author | Figueres Amorós, Emilio | es_ES |
dc.contributor.author | Patrao Herrero, Iván | es_ES |
dc.contributor.author | González Medina, Raúl | es_ES |
dc.date.accessioned | 2016-02-12T10:22:16Z | |
dc.date.available | 2016-02-12T10:22:16Z | |
dc.date.issued | 2015-10 | |
dc.identifier.issn | 0098-9886 | |
dc.identifier.uri | http://hdl.handle.net/10251/60828 | |
dc.description.abstract | Bidirectional power flow is needed in many power conversion systems like energy storage systems, regeneration systems, power converters for improvement of the power quality and some DC-DC applications where bidirectional high power conversion and galvanic isolation are required. The dual active bridge (DAB) is an isolated, high voltage ratio DC-DC converter suitable for high power density and high power applications, being a key interface between renewable energy sources and energy storage devices. This paper is focused on the modeling and control design of a DC-DC system with battery storage based on a DAB converter with average current mode control of the output current and output voltage control. The dynamic response of the output voltage to load steps is improved by means of an additional load-current feed-forward control loop. An analytical study of the load-current feed-forward is presented and validated by means of both simulations and experimental results. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness under grant ENE2012-37667-C02-01. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | International Journal of Circuit Theory and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | DC-DC power conversion | es_ES |
dc.subject | Dual active bridge | es_ES |
dc.subject | Current mode control | es_ES |
dc.subject | Feed-forward | es_ES |
dc.subject | Modeling | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cta.2012 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2012-37667-C02-01/ES/ARQUITECTURAS DE POTENCIA Y CONTROL DE MICRORREDES INTELIGENTES PARA LA GESTION EFICIENTE DE ENERGIA ELECTRICA EN ENTORNOS RESIDENCIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Guacaneme Moreno, JA.; Gabriel Garcerá; Figueres Amorós, E.; Patrao Herrero, I.; González Medina, R. (2015). Dynamic modeling of a dual active bridge DC to DC converter with average current control and load-current feed-forward. International Journal of Circuit Theory and Applications. 43(10):1311-1332. https://doi.org/10.1002/cta.2012 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cta.2012 | es_ES |
dc.description.upvformatpinicio | 1311 | es_ES |
dc.description.upvformatpfin | 1332 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 277829 | es_ES |
dc.identifier.eissn | 1097-007X | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Vazquez, S., Lukic, S. M., Galvan, E., Franquelo, L. G., & Carrasco, J. M. (2010). Energy Storage Systems for Transport and Grid Applications. IEEE Transactions on Industrial Electronics, 57(12), 3881-3895. doi:10.1109/tie.2010.2076414 | es_ES |
dc.description.references | De Doncker, R. W. A. A., Divan, D. M., & Kheraluwala, M. H. (1991). A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Transactions on Industry Applications, 27(1), 63-73. doi:10.1109/28.67533 | es_ES |
dc.description.references | Kheraluwala, M. N., Gascoigne, R. W., Divan, D. M., & Baumann, E. D. (1992). Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Transactions on Industry Applications, 28(6), 1294-1301. doi:10.1109/28.175280 | es_ES |
dc.description.references | Chang, Y.-H., & Wu, K.-W. (2012). A gain/efficiency-enhanced bidirectional switched-capacitor DC-DC converter. International Journal of Circuit Theory and Applications, 42(5), 468-493. doi:10.1002/cta.1863 | es_ES |
dc.description.references | Li H Liu D Peng FZ Gui-Jia S Small Signal Analysis of A Dual Half Bridge Isolated ZVS Bi-directional DC-DC converter for Electrical Vehicle Applicat 36th IEEE Power Electronics Specialists Conference 2005 2777 2782 | es_ES |
dc.description.references | Chiu, H.-J., Yao, C.-J., & Lo, Y.-K. (2009). A DC/DC converter topology for renewable energy systems. International Journal of Circuit Theory and Applications, 37(3), 485-495. doi:10.1002/cta.475 | es_ES |
dc.description.references | Doishita K Hashiwaki M Aoki T Kawagoe Y Murakami N Highly reliable uninterruptible power supply using a bi-directional converter The 21st International Telecommunication Energy Conference (INTELEC '99), Copenhagen 1999 10.1109/INTLEC.1999.794066 | es_ES |
dc.description.references | Krismer F Biela J Kolar JW A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range 40th IAS Annual Meeting Industry Applications Conference 2005 1 599 606 | es_ES |
dc.description.references | Aggeler D Biela J Inoue S Akagi H Kolar JW Bi-Directional Isolated DC-DC Converter for Next-Generation Power Distribution - Comparison of Converters using Si and SiC Devices Power Conversion Conference-Nago 2007 510 517 | es_ES |
dc.description.references | Krishnamurthy HK Ayyanar R Building Block Converter Module for Universal (AC-DC, DC-AC, DC-DC) Fully Modular Power Conversion Architecture IEEE Power Electronics Specialists Conference 2007 483 489 | es_ES |
dc.description.references | Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-Connected Photovoltaic Generation Plants: Components and Operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. doi:10.1109/mie.2013.2264540 | es_ES |
dc.description.references | Yu, X., She, X., Ni, X., & Huang, A. Q. (2014). System Integration and Hierarchical Power Management Strategy for a Solid-State Transformer Interfaced Microgrid System. IEEE Transactions on Power Electronics, 29(8), 4414-4425. doi:10.1109/tpel.2013.2289374 | es_ES |
dc.description.references | Liserre, M., Sauter, T., & Hung, J. (2010). Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Industrial Electronics Magazine, 4(1), 18-37. doi:10.1109/mie.2010.935861 | es_ES |
dc.description.references | Mi, C., Bai, H., Wang, C., & Gargies, S. (2008). Operation, design and control of dual H-bridge-based isolated bidirectional DC–DC converter. IET Power Electronics, 1(4), 507. doi:10.1049/iet-pel:20080004 | es_ES |
dc.description.references | Friedemann A Krismer F Kolar JW Design of a Minimum Weight Dual Active Bridge Converter for an Airborne Wind Turbine System Proceedings of the 27th Applied Power Electronics Conference and Exposition (APEC) 2012 | es_ES |
dc.description.references | Krismer, F., & Kolar, J. W. (2010). Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application. IEEE Transactions on Industrial Electronics, 57(3), 881-891. doi:10.1109/tie.2009.2025284 | es_ES |
dc.description.references | Hengsi Qin, & Kimball, J. W. (2012). Generalized Average Modeling of Dual Active Bridge DC–DC Converter. IEEE Transactions on Power Electronics, 27(4), 2078-2084. doi:10.1109/tpel.2011.2165734 | es_ES |
dc.description.references | Segaran D McGrath B Holmes DG Adaptive dynamic control of a Bidirectional DC-DC converter IEEE Proceedings Energy Conversion Congress 2010 1442 1449 | es_ES |
dc.description.references | Bai H Mi C Wang C Gargies S The dynamic model and hybrid phase-shift control of a dual-active-bridge converter Proceedings IECON 2008 2840 2845 | es_ES |
dc.description.references | Segaran, D., Holmes, D. G., & McGrath, B. P. (2013). Enhanced Load Step Response for a Bidirectional DC–DC Converter. IEEE Transactions on Power Electronics, 28(1), 371-379. doi:10.1109/tpel.2012.2200505 | es_ES |
dc.description.references | Tang W Lee FC Ridley RB Small-signal modeling of average current-mode control APEC'92. Seventh Annual Conference Proceedings 1992 747 755 | es_ES |
dc.description.references | Kheraluwala MH High-Power High frequency DC-DC converters PhD thesis 1991 | es_ES |
dc.description.references | Fang, C.-C. (2011). Sampled-data poles, zeros, and modeling for current-mode control. International Journal of Circuit Theory and Applications, 41(2), 111-127. doi:10.1002/cta.790 | es_ES |
dc.description.references | Redl, R., & Sokal, N. O. (1986). Near-Optimum Dynamic Regulation of DC-DC Converters Using Feed-Forward of Output Current and Input Voltage with Current-Mode Control. IEEE Transactions on Power Electronics, PE-1(3), 181-192. doi:10.1109/tpel.1986.4766303 | es_ES |
dc.description.references | Qin H Kimball JW Closed-loop control of DC-DC dual active bridge converters driving single-phase inverters IEEE Energy Conversion Congress and Exposition (ECCE) 2012 173 179 | es_ES |