- -

Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings

Show simple item record

Files in this item

dc.contributor.author Cantini, Marco es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Moratal Pérez, David es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2016-02-15T11:14:59Z
dc.date.available 2016-02-15T11:14:59Z
dc.date.issued 2012
dc.identifier.issn 1744-683X
dc.identifier.uri http://hdl.handle.net/10251/60869
dc.description.abstract Plasma polymerization was used to produce novel nanometric coatings able to direct fibronectin adsorption and cell response. Using ethyl acrylate as a monomer, we obtain coatings whose chemical composition maintains some of the characteristic functionalities of the photo-initiated polymer, while the water contact angle increases monotonically with the duration of the plasma discharge. Enhanced surface mobility of the polymer chains due to a decrease of the thickness of the coating justifies this increase in wettability at lower treatment times. The coatings with higher surface mobility are shown to promote a more active conformation of the adsorbed protein, as proved by binding of the monoclonal antibodies HFN7.1 and mAb1937. Culture of MC3T3-E1 osteoblast-like cells onto the fibronectin-coated substrates further proves that the more mobile surfaces support better initial cell adhesion, even at low fibronectin surface density, as well as stronger cell-mediated fibronectin reorganization. es_ES
dc.description.sponsorship The authors would like to acknowledge the financial support of the Spanish Ministry of Science and Innovation through the project MAT2009-14440-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Soft Matter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SUBSTRATUM-BOUND FIBRONECTIN es_ES
dc.subject GLASS-TRANSITION TEMPERATURE es_ES
dc.subject SELF-ASSEMBLED MONOLAYERS es_ES
dc.subject CELL-ADHESION es_ES
dc.subject SURFACE CHEMISTRIES es_ES
dc.subject ELECTRON-MICROSCOPY es_ES
dc.subject COPOLYMER SURFACES es_ES
dc.subject INTEGRIN BINDING es_ES
dc.subject FILMS es_ES
dc.subject BIOCOMPATIBILITY es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c2sm25413a
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Cantini, M.; Rico Tortosa, PM.; Moratal Pérez, D.; Salmerón Sánchez, M. (2012). Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter. 8(20):5575-5584. https://doi.org/10.1039/c2sm25413a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c2sm25413a es_ES
dc.description.upvformatpinicio 5575 es_ES
dc.description.upvformatpfin 5584 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 20 es_ES
dc.relation.senia 235419 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071 es_ES
dc.description.references Gumbiner, B. M. (1996). Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell, 84(3), 345-357. doi:10.1016/s0092-8674(00)81279-9 es_ES
dc.description.references Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089 es_ES
dc.description.references Tsapikouni, T. S., & Missirlis, Y. F. (2008). Protein–material interactions: From micro-to-nano scale. Materials Science and Engineering: B, 152(1-3), 2-7. doi:10.1016/j.mseb.2008.06.007 es_ES
dc.description.references Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 es_ES
dc.description.references Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066 es_ES
dc.description.references Erickson, H. P., Carrell, N., & McDonagh, J. (1981). Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. The Journal of Cell Biology, 91(3), 673-678. doi:10.1083/jcb.91.3.673 es_ES
dc.description.references Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059 es_ES
dc.description.references Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 es_ES
dc.description.references Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a es_ES
dc.description.references García, A. (1999). Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials, 20(23-24), 2427-2433. doi:10.1016/s0142-9612(99)00170-2 es_ES
dc.description.references Toworfe, G. K., Composto, R. J., Adams, C. S., Shapiro, I. M., & Ducheyne, P. (2004). Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. Journal of Biomedical Materials Research, 71A(3), 449-461. doi:10.1002/jbm.a.30164 es_ES
dc.description.references Baugh, L., & Vogel, V. (2004). Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. Journal of Biomedical Materials Research, 69A(3), 525-534. doi:10.1002/jbm.a.30026 es_ES
dc.description.references Lan, M. A., Gersbach, C. A., Michael, K. E., Keselowsky, B. G., & García, A. J. (2005). Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials, 26(22), 4523-4531. doi:10.1016/j.biomaterials.2004.11.028 es_ES
dc.description.references Altankov, G., Thom, V., Groth, T., Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. Journal of Biomedical Materials Research, 52(1), 219-230. doi:10.1002/1097-4636(200010)52:1<219::aid-jbm28>3.0.co;2-f es_ES
dc.description.references Iuliano, D. J., Saavedra, S. S., & Truskey, G. A. (1993). Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. Journal of Biomedical Materials Research, 27(8), 1103-1113. doi:10.1002/jbm.820270816 es_ES
dc.description.references Cheng, S.-S., Chittur, K. K., Sukenik, C. N., Culp, L. A., & Lewandowska, K. (1994). The Conformation of Fibronectin on Self-Assembled Monolayers with Different Surface Composition: An FTIR/ATR Study. Journal of Colloid and Interface Science, 162(1), 135-143. doi:10.1006/jcis.1994.1018 es_ES
dc.description.references Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 es_ES
dc.description.references Kowalczy?ska, H. M., Nowak-Wyrzykowska, M., Ko?os, R., Dobkowski, J., & Kami?ski, J. (2004). Fibronectin adsorption and arrangement on copolymer surfaces and their significance in cell adhesion. Journal of Biomedical Materials Research Part A, 72A(2), 228-236. doi:10.1002/jbm.a.30238 es_ES
dc.description.references Weikart, C. M., Miyama, M., & Yasuda, H. K. (1999). Surface Modification of Conventional Polymers by Depositing Plasma Polymers of Trimethylsilane and of Trimethylsilane + O2. Journal of Colloid and Interface Science, 211(1), 18-27. doi:10.1006/jcis.1998.5963 es_ES
dc.description.references Barry, J. J. A., Silva, M. M. C. G., Shakesheff, K. M., Howdle, S. M., & Alexander, M. R. (2005). Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly(D,L-Lactic Acid) Tissue-Engineering Scaffolds. Advanced Functional Materials, 15(7), 1134-1140. doi:10.1002/adfm.200400562 es_ES
dc.description.references Brétagnol, F., Lejeune, M., Papadopoulou-Bouraoui, A., Hasiwa, M., Rauscher, H., Ceccone, G., … Rossi, F. (2006). Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomaterialia, 2(2), 165-172. doi:10.1016/j.actbio.2005.11.002 es_ES
dc.description.references Zelzer, M., Majani, R., Bradley, J. W., Rose, F. R. A. J., Davies, M. C., & Alexander, M. R. (2008). Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials, 29(2), 172-184. doi:10.1016/j.biomaterials.2007.09.026 es_ES
dc.description.references Menzies, D. J., Cowie, B., Fong, C., Forsythe, J. S., Gengenbach, T. R., McLean, K. M., … Muir, B. W. (2010). One-Step Method for Generating PEG-Like Plasma Polymer Gradients: Chemical Characterization and Analysis of Protein Interactions. Langmuir, 26(17), 13987-13994. doi:10.1021/la102033d es_ES
dc.description.references Kurosawa, S., Kamo, N., Matsui, D., & Kobatake, Y. (1990). Gas sorption to plasma-polymerized copper phthalocyanine film formed on a piezoelectric crystal. Analytical Chemistry, 62(4), 353-359. doi:10.1021/ac00203a009 es_ES
dc.description.references Shi, F. F. (1996). Recent advances in polymer thin films prepared by plasma polymerization Synthesis, structural characterization, properties and applications. Surface and Coatings Technology, 82(1-2), 1-15. doi:10.1016/0257-8972(95)02621-5 es_ES
dc.description.references Arefi, F., Andre, V., Montazer-Rahmati, P., & Amouroux, J. (1992). Plasma polymerization and surface treatment of polymers. Pure and Applied Chemistry, 64(5), 715-723. doi:10.1351/pac199264050715 es_ES
dc.description.references Yasuda, H., & Hsu, T. (1977). Some aspects of plasma polymerization investigated by pulsed R.F. discharge. Journal of Polymer Science: Polymer Chemistry Edition, 15(1), 81-97. doi:10.1002/pol.1977.170150109 es_ES
dc.description.references O’Toole, L., Short, R. D., Ameen, A. P., & Jones, F. R. (1995). Mass spectrometry of and deposition-rate measurements from radiofrequency-induced plasmas of methyl isobutyrate, methyl methacrylate and n-butyl methacrylate. Journal of the Chemical Society, Faraday Transactions, 91(9), 1363. doi:10.1039/ft9959101363 es_ES
dc.description.references Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 es_ES
dc.description.references Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057 es_ES
dc.description.references Yasuda, H. (1981). Glow discharge polymerization. Journal of Polymer Science: Macromolecular Reviews, 16(1), 199-293. doi:10.1002/pol.1981.230160104 es_ES
dc.description.references Reiter, G. (1993). Mobility of Polymers in Films Thinner than Their Unperturbed Size. Europhysics Letters (EPL), 23(8), 579-584. doi:10.1209/0295-5075/23/8/007 es_ES
dc.description.references Keddie, J. L., Jones, R. A. L., & Cory, R. A. (1994). Size-Dependent Depression of the Glass Transition Temperature in Polymer Films. Europhysics Letters (EPL), 27(1), 59-64. doi:10.1209/0295-5075/27/1/011 es_ES
dc.description.references Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R., & Dutcher, J. R. (1996). Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films. Physical Review Letters, 77(10), 2002-2005. doi:10.1103/physrevlett.77.2002 es_ES
dc.description.references Yang, Z., Fujii, Y., Lee, F. K., Lam, C.-H., & Tsui, O. K. C. (2010). Glass Transition Dynamics and Surface Layer Mobility in Unentangled Polystyrene Films. Science, 328(5986), 1676-1679. doi:10.1126/science.1184394 es_ES
dc.description.references Yasuda, H., Sharma, A. K., & Yasuda, T. (1981). Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis. Journal of Polymer Science: Polymer Physics Edition, 19(9), 1285-1291. doi:10.1002/pol.1981.180190901 es_ES
dc.description.references Van Damme, H. ., Hogt, A. ., & Feijen, J. (1986). Surface mobility and structural transitions of poly(n-alkyl methacrylates) probed by dynamic contact angle measurements. Journal of Colloid and Interface Science, 114(1), 167-172. doi:10.1016/0021-9797(86)90248-1 es_ES
dc.description.references Griesser, H. J., Chatelier, R. C., Gengenbach, T. R., Johnson, G., & Steele, J. G. (1994). Growth of human cells on plasma polymers: Putative role of amine and amide groups. Journal of Biomaterials Science, Polymer Edition, 5(6), 531-554. doi:10.1163/156856294x00194 es_ES
dc.description.references SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.description.references Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 es_ES
dc.description.references Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 es_ES
dc.description.references Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039 es_ES
dc.description.references McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h es_ES
dc.description.references SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99 es_ES
dc.description.references Anselme, K., Ponche, A., & Bigerelle, M. (2010). Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1487-1507. doi:10.1243/09544119jeim901 es_ES
dc.description.references Andrade, J. D. (1992). Needs, problems, and opportunities in biomaterials and biocompatibility. Clinical Materials, 11(1-4), 19-23. doi:10.1016/0267-6605(92)90026-p es_ES
dc.description.references Xu, Y., Takai, M., & Ishihara, K. (2009). Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 30(28), 4930-4938. doi:10.1016/j.biomaterials.2009.06.005 es_ES
dc.description.references Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 es_ES
dc.description.references Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366 es_ES
dc.description.references Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711 es_ES
dc.description.references Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012 es_ES
dc.description.references Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 es_ES


This item appears in the following Collection(s)

Show simple item record