Mostrar el registro sencillo del ítem
dc.contributor.author | Balaguer Beser, Ángel Antonio | es_ES |
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.contributor.author | Hermosilla, T. | es_ES |
dc.contributor.author | Recio Recio, Jorge Abel | es_ES |
dc.date.accessioned | 2016-02-18T15:59:59Z | |
dc.date.available | 2016-02-18T15:59:59Z | |
dc.date.issued | 2010-02 | |
dc.identifier.issn | 0098-3004 | |
dc.identifier.uri | http://hdl.handle.net/10251/60994 | |
dc.description.abstract | In this paper, a comprehensive set of texture features extracted from the experimental semivariogram of specific image objects is proposed and described, and their usefulness for land use classification of high resolution images is evaluated. Fourteen features are defined and categorized into three different groups, according to the location of their respective parameters in the semivariogram curve: (i) features that use parameters close to the origin of the semivariogram, (ii) the parameters employed extend to the first maximum, and (iii) the parameters employed are extracted from the first to the second maximum. A selection of the most relevant features has been performed, combining the analysis and interpretation of redundancies, and using statistical discriminant analysis methods. The suitability of the proposed features for object-based image classification has been evaluated using digital aerial images from an agricultural area on the Mediterranean coast of Spain. The performance of the selected semivariogram features has been compared with two different sets of texture features: those derived from the grey level co-occurrence matrix, and the values of raw semivariance directly extracted from the semivariogram at different positions. As a result of the tests, the classification accuracies obtained using the proposed semivariogram features are, in general, higher and more balanced than those obtained using the other two sets of standard texture features. | es_ES |
dc.description.sponsorship | The authors appreciate the financial support provided by the Spanish Ministry of Science and innovation and the FEDER in the framework of the Projects CTM2006-11767/TECNO and CLG2006-11242-C03/BTE. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers & Geosciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Texture analysis | es_ES |
dc.subject | Semivariogram features | es_ES |
dc.subject | Object-oriented classification | es_ES |
dc.subject | High resolution imagery | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cageo.2009.05.003 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTM2006-11767/ES/DESARROLLO Y APLICACION DE NUEVAS TECNICAS DE ACTUALIZACION E INTERPOLACION CARTOGRAFICAS Y ANALISIS MORFOMETRICO DEL TERRENO COMO HERRAMIENTAS DE UTILIDAD EN LA CARACTERIZACION DE SISTEMAS HIDROLOGI/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CLG2006-11242-C03/ES/EL LITORAL CARBONATADO MEDITERRANEO: MORFOGENESIS KARSTICA, FLUVIAL Y LITORAL Y REGISTROS SEDIMENTARIOS RESPECTIVOS, COMO RESPUESTAS A LA VARIABILIDAD PALEOCLIMATICA CUATERNARIA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Balaguer Beser, ÁA.; Ruiz Fernández, LÁ.; Hermosilla, T.; Recio Recio, JA. (2010). Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification. Computers & Geosciences. 36(2):231-240. doi:10.1016/j.cageo.2009.05.003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.cageo.2009.05.003 | es_ES |
dc.description.upvformatpinicio | 231 | es_ES |
dc.description.upvformatpfin | 240 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 37133 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |