Mostrar el registro sencillo del ítem
dc.contributor.author | Archetti, Claudia | es_ES |
dc.contributor.author | Speranza, M. Grazia | es_ES |
dc.contributor.author | Corberan, Angel | es_ES |
dc.contributor.author | Sanchís Llopis, José María | es_ES |
dc.contributor.author | Plana, Isaac | es_ES |
dc.date.accessioned | 2016-02-19T12:12:03Z | |
dc.date.available | 2016-02-19T12:12:03Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 0041-1655 | |
dc.identifier.uri | http://hdl.handle.net/10251/61010 | |
dc.description.abstract | The team orienteering arc routing problem (TOARP) is the extension to the arc routing setting of the team orienteering problem. In the TOARP, in addition to a possible set of regular customers that have to be serviced, another set of potential customers is available. Each customer is associated with an arc of a directed graph. Each potential customer has a profit that is collected when it is serviced, that is, when the associated arc is traversed. A fleet of vehicles with a given maximum traveling time is available. The profit from a customer can be collected by one vehicle at most. The objective is to identify the customers that maximize the total profit collected while satisfying the given time limit for each vehicle. In this paper we propose a formulation for this problem and study a relaxation of its associated polyhedron. We present some families of valid and facet-inducing inequalities that we use in the implementation of a branch-and-cut algorithm for the resolution of the problem. Computational experiments are run on a large set of benchmark instances. | es_ES |
dc.description.sponsorship | The authors thank the reviewers for their comments that helped to provide an improved and clearer version of this paper. Angel Corberan, Isaac Plana, and Jose M. Sanchis wish to thank the Ministerio de Ciencia e Innovacion [Project MTM2009-14039-C06-02] and the Ministerio of Economia y Competitividad [Project MTM2012-36163-C06-02] of Spain for their support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | INFORMS (Institute for Operations Research and Management Sciences) | es_ES |
dc.relation.ispartof | Transportation Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Team orienteering arc routing problem | es_ES |
dc.subject | Profits | es_ES |
dc.subject | Multivehicle | es_ES |
dc.subject | Facets | es_ES |
dc.subject | Branch and cut | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | The Team Orienteering Arc Routing Problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1287/trsc.2013.0484 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-14039-C06-02/ES/Modelos Y Metodos De Programacion Matematica Y Sus Aplicaciones (Optimos2)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-36163-C06-02/ES/MODELOS Y METODOS DE PROGRAMACION MATEMATICA Y SUS APLICACIONES (OPTIMOS3)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Archetti, C.; Speranza, MG.; Corberan, A.; Sanchís Llopis, JM.; Plana, I. (2014). The Team Orienteering Arc Routing Problem. Transportation Science. 48(3):442-457. https://doi.org/10.1287/trsc.2013.0484 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1287/trsc.2013.0484 | es_ES |
dc.description.upvformatpinicio | 442 | es_ES |
dc.description.upvformatpfin | 457 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 280887 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |