Mostrar el registro sencillo del ítem
dc.contributor.author | Bonancía Roca, Paula | es_ES |
dc.contributor.author | Vayá Pérez, Ignacio | es_ES |
dc.contributor.author | Markovitsi, Dimitra | es_ES |
dc.contributor.author | Gustavsson, Thomas | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.date.accessioned | 2016-02-23T09:30:10Z | |
dc.date.available | 2016-02-23T09:30:10Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1477-0520 | |
dc.identifier.uri | http://hdl.handle.net/10251/61108 | |
dc.description.abstract | The photochemical processes occurring in diastereomeric dyads (S, S)-1 and (S, R)-1, prepared by conjugation of (S)-2-(2-hydroxy-1,1'-biphenyl-4-yl) propanoic acid ((S)-BPOH) with (S)- and (R)-Trp, have been investigated. In acetonitrile, the fluorescence spectra of (S, S)-1 and (S, R)-1 were coincident in shape and position with that of (S)-BPOH, although they revealed a markedly stereoselective quenching. Since singlet energy transfer from BPOH to Trp is forbidden (5 kcal mol(-1) uphill), the quenching was attributed to thermodynamically favoured (according to Rehm-Weller) electron transfer or exciplex formation. Upon addition of 20% water, the fluorescence quantum yield of (S)-BPOH decreased, while only minor changes were observed for the dyads. This can be explained by an enhancement of the excited state acidity of (S)-BPOH, associated with bridging of the carboxy and hydroxy groups by water, in agreement with the presence of water molecules in the X-ray structure of (S)-BPOH. When the carboxy group was not available for coordination with water, as in the methyl ester (S)-BPOHMe or in the dyads, this effect was prevented; accordingly, the fluorescence quantum yields did not depend on the presence or absence of water. The fluorescence lifetimes in dry acetonitrile were 1.67, 0.95 and 0.46 ns for (S)-BPOH, (S, S)-1 and (S, R)-1, respectively, indicating that the observed quenching is indeed dynamic. In line with the steady-state and time-resolved observations, molecular modelling pointed to a more favourable geometric arrangement of the two interacting chromophores in (S, R)-1. Interestingly, this dyad exhibited a folded conformation in the solid state. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Government (CTQ2010-14882, BES-2008-003314, JCI-2011-09926, PR2011-0581), from the Generalitat Valenciana (Prometeo 2008/090) and from the Universitat Politecnica de Valencia (PAID 05-11, 2766) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Organic and Biomolecular Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | HUMAN SERUM-ALBUMIN | es_ES |
dc.subject | PROTON-TRANSFER | es_ES |
dc.subject | ELECTRON-TRANSFER | es_ES |
dc.subject | THYMINE DYADS | es_ES |
dc.subject | MODEL DYADS | es_ES |
dc.subject | FLUORESCENCE | es_ES |
dc.subject | PROTEINS | es_ES |
dc.subject | FLURBIPROFEN | es_ES |
dc.subject | DRUG | es_ES |
dc.subject | RELAXATION | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Stereodifferentiation in the intramolecular singlet excited state quenching of hydroxybiphenyl-tryptophan dyads | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3ob27278h | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F090/ES/Especies fotoactivas como sondas para proteínas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-11-2766/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2008-003314/ES/BES-2008-003314/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-09926/ES/JCI-2011-09926/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ME//PR2011-0581/ES/PR2011-0581/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Bonancía Roca, P.; Vayá Pérez, I.; Markovitsi, D.; Gustavsson, T.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2013). Stereodifferentiation in the intramolecular singlet excited state quenching of hydroxybiphenyl-tryptophan dyads. Organic and Biomolecular Chemistry. 11(12):1958-1963. https://doi.org/10.1039/c3ob27278h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3ob27278h | es_ES |
dc.description.upvformatpinicio | 1958 | es_ES |
dc.description.upvformatpfin | 1963 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 234594 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001 | es_ES |
dc.description.references | Abad, S., Pischel, U., & Miranda, M. A. (2005). Wavelength-Dependent Stereodifferentiation in the Fluorescence Quenching of Asymmetric Naphthalene-Based Dyads by Amines. The Journal of Physical Chemistry A, 109(12), 2711-2717. doi:10.1021/jp047996a | es_ES |
dc.description.references | Abad, S., Vayá, I., Jiménez, M. C., Pischel, U., & Miranda, M. A. (2006). Diastereodifferentiation of Novel Naphthalene Dyads by Fluorescence Quenching and Excimer Formation. ChemPhysChem, 7(10), 2175-2183. doi:10.1002/cphc.200600337 | es_ES |
dc.description.references | Bonancía, P., Vayá, I., Climent, M. J., Gustavsson, T., Markovitsi, D., Jiménez, M. C., & Miranda, M. A. (2012). Excited-State Interactions in Diastereomeric Flurbiprofen–Thymine Dyads. The Journal of Physical Chemistry A, 116(35), 8807-8814. doi:10.1021/jp3063838 | es_ES |
dc.description.references | Paris, C., Encinas, S., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2008). Photogeneration of 2-Deoxyribonolactone in Benzophenone−Purine Dyads. Formation of Ketyl−C1′ Biradicals. Organic Letters, 10(20), 4409-4412. doi:10.1021/ol801514v | es_ES |
dc.description.references | Belmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Boscá, F., & Miranda, M. A. (2007). Stereodifferentiating Drug−Biomolecule Interactions in the Triplet Excited State: Studies on Supramolecular Carprofen/Protein Systems and on Carprofen−Tryptophan Model Dyads. The Journal of Physical Chemistry B, 111(2), 423-431. doi:10.1021/jp066968k | es_ES |
dc.description.references | Vayá, I., Pérez-Ruiz, R., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091 | es_ES |
dc.description.references | Seedher, N., & Bhatia, S. (2005). Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 39(1-2), 257-262. doi:10.1016/j.jpba.2005.02.031 | es_ES |
dc.description.references | SEEDHER, N., & BHATIA, S. (2006). Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique. Pharmacological Research, 54(2), 77-84. doi:10.1016/j.phrs.2006.02.008 | es_ES |
dc.description.references | Nanda, R. K., Sarkar, N., & Banerjee, R. (2007). Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry, 192(2-3), 152-158. doi:10.1016/j.jphotochem.2007.05.018 | es_ES |
dc.description.references | Zhou, B., Li, R., Zhang, Y., & Liu, Y. (2008). Kinetic analysis of the interaction between amphotericin B and human serum albumin using surface plasmon resonance and fluorescence spectroscopy. Photochemical & Photobiological Sciences, 7(4), 453. doi:10.1039/b717897b | es_ES |
dc.description.references | Vahedian-Movahed, H., Saberi, M. R., & Chamani, J. (2011). Comparison of Binding Interactions of Lomefloxacin to Serum Albumin and Serum Transferrin by Resonance Light Scattering and Fluorescence Quenching Methods. Journal of Biomolecular Structure and Dynamics, 28(4), 483-502. doi:10.1080/07391102.2011.10508590 | es_ES |
dc.description.references | Katrahalli, U., Kalalbandi, V. K. A., & Jaldappagari, S. (2012). The effect of anti-tubercular drug, ethionamide on the secondary structure of serum albumins: A biophysical study. Journal of Pharmaceutical and Biomedical Analysis, 59, 102-108. doi:10.1016/j.jpba.2011.09.013 | es_ES |
dc.description.references | El-Kemary, M., Gil, M., & Douhal, A. (2007). Relaxation Dynamics of Piroxicam Structures within Human Serum Albumin Protein. Journal of Medicinal Chemistry, 50(12), 2896-2902. doi:10.1021/jm061421f | es_ES |
dc.description.references | Tormo, L., Organero, J. A., Cohen, B., Martin, C., Santos, L., & Douhal, A. (2008). Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. The Journal of Physical Chemistry B, 112(43), 13641-13647. doi:10.1021/jp803083y | es_ES |
dc.description.references | Tardioli, S., Lammers, I., Hooijschuur, J.-H., Ariese, F., van der Zwan, G., & Gooijer, C. (2012). Complementary Fluorescence and Phosphorescence Study of the Interaction of Brompheniramine with Human Serum Albumin. The Journal of Physical Chemistry B, 116(24), 7033-7039. doi:10.1021/jp300055c | es_ES |
dc.description.references | Vayá, I., Jiménez, M. C., & Miranda, M. A. (2007). Excited-State Interactions in Flurbiprofen−Tryptophan Dyads. The Journal of Physical Chemistry B, 111(31), 9363-9371. doi:10.1021/jp071301z | es_ES |
dc.description.references | Callis, P. R., & Burgess, B. K. (1997). Tryptophan Fluorescence Shifts in Proteins from Hybrid Simulations: An Electrostatic Approach. The Journal of Physical Chemistry B, 101(46), 9429-9432. doi:10.1021/jp972436f | es_ES |
dc.description.references | Lakowicz, J. R. (2000). On Spectral Relaxation in Proteins†¶‖. Photochemistry and Photobiology, 72(4), 421. doi:10.1562/0031-8655(2000)072<0421:osrip>2.0.co;2 | es_ES |
dc.description.references | Schuler, B., & Eaton, W. A. (2008). Protein folding studied by single-molecule FRET. Current Opinion in Structural Biology, 18(1), 16-26. doi:10.1016/j.sbi.2007.12.003 | es_ES |
dc.description.references | Shen, X., & Knutson, J. R. (2001). Subpicosecond Fluorescence Spectra of Tryptophan in Water. The Journal of Physical Chemistry B, 105(26), 6260-6265. doi:10.1021/jp010384v | es_ES |
dc.description.references | Beechem, J. M., & Brand, L. (1985). Time-Resolved Fluorescence of Proteins. Annual Review of Biochemistry, 54(1), 43-71. doi:10.1146/annurev.bi.54.070185.000355 | es_ES |
dc.description.references | Callis, P. R. (1997). [7] 1La and 1Lb transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins. Flourescence Spectroscopy, 113-150. doi:10.1016/s0076-6879(97)78009-1 | es_ES |
dc.description.references | Basarić, N., & Wan, P. (2006). Competing Excited State Intramolecular Proton Transfer Pathways from Phenol to Anthracene Moieties. The Journal of Organic Chemistry, 71(7), 2677-2686. doi:10.1021/jo0524728 | es_ES |
dc.description.references | Lukeman, M., & Wan, P. (2003). Excited-State Intramolecular Proton Transfer ino-Hydroxybiaryls: A New Route to Dihydroaromatic Compounds. Journal of the American Chemical Society, 125(5), 1164-1165. doi:10.1021/ja029376y | es_ES |
dc.description.references | Keck, J., Kramer, H. E. A., Port, H., Hirsch, T., Fischer, P., & Rytz, G. (1996). Investigations on Polymeric and Monomeric Intramolecularly Hydrogen-Bridged UV Absorbers of the Benzotriazole and Triazine Class. The Journal of Physical Chemistry, 100(34), 14468-14475. doi:10.1021/jp961081h | es_ES |
dc.description.references | Vollmer, F., & Rettig, W. (1996). Fluorescence loss mechanism due to large-amplitude motions in derivatives of 2,2′-bipyridyl exhibiting excited-state intramolecular proton transfer and perspectives of luminescence solar concentrators. Journal of Photochemistry and Photobiology A: Chemistry, 95(2), 143-155. doi:10.1016/1010-6030(95)04252-0 | es_ES |
dc.description.references | Lukeman, M., & Wan, P. (2002). A New Type of Excited-State Intramolecular Proton Transfer: Proton Transfer from Phenol OH to a Carbon Atom of an Aromatic Ring Observed for 2-Phenylphenol1. Journal of the American Chemical Society, 124(32), 9458-9464. doi:10.1021/ja0267831 | es_ES |
dc.description.references | Jiménez, M. C., Miranda, M. A., Tormos, R., & Vayá, I. (2004). Characterisation of the lowest singlet and triplet excited states of S-flurbiprofen. Photochem. Photobiol. Sci., 3(11-12), 1038-1041. doi:10.1039/b408530b | es_ES |
dc.description.references | Weller, A. (1982). Photoinduced Electron Transfer in Solution: Exciplex and Radical Ion Pair Formation Free Enthalpies and their Solvent Dependence. Zeitschrift für Physikalische Chemie, 133(1), 93-98. doi:10.1524/zpch.1982.133.1.093 | es_ES |
dc.description.references | Winget, P., Cramer, C. J., & Truhlar, D. G. (2004). Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theoretical Chemistry Accounts, 112(4). doi:10.1007/s00214-004-0577-0 | es_ES |
dc.description.references | ÇAKIR, S., & BÇER, E. (2010). SYNTHESIS, SPECTRAL CHARACTERIZATION AND ELECTROCHEMISTRY OF VANADIUM(V) COMPLEX WITH TRYPTOPHAN. Journal of the Chilean Chemical Society, 55(2). doi:10.4067/s0717-97072010000200020 | es_ES |