- -

Extraordinary absorption by a thin dielectric slab backed with a metasurface

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extraordinary absorption by a thin dielectric slab backed with a metasurface

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz Rubio, Ana es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Carbonell Olivares, Jorge es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2016-02-23T15:48:19Z
dc.date.available 2016-02-23T15:48:19Z
dc.date.issued 2014-06
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/61132
dc.description.abstract The absorption of electromagnetic waves by a thin dielectric slab backed by a metasurface has been comprehensively studied and discussed at microwave frequencies. The metasurface consists of a metallic plate decorated with a periodic distribution of coaxial- or annular-type cavities. Analytical expressions for the absorbance have been obtained by using a mode-matching method. For P-polarized waves it is predicted that a low-frequency peak of perfect absorption is possible by properly choosing the lossy component of the permittivity of the dielectric slab, with the position of this peak being easily tunable by the cavity length. It is also shown that non-Bravais lattices, containing several cavities in the unit cell, and the excitation of guided waves by the periodic array of resonators are complementary absorption mechanisms in the studied structures. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under contract TEC2010-19751 and by the US Office of Naval Research. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Extraordinary absorption by a thin dielectric slab backed with a metasurface es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.89.245123
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Díaz Rubio, A.; Torrent Martí, D.; Carbonell Olivares, J.; Sánchez-Dehesa Moreno-Cid, J. (2014). Extraordinary absorption by a thin dielectric slab backed with a metasurface. Physical Review B. 89:245123-1-245123-10. https://doi.org/10.1103/PhysRevB.89.245123 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.89.245123 es_ES
dc.description.upvformatpinicio 245123-1 es_ES
dc.description.upvformatpfin 245123-10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.relation.senia 269114 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Rayleigh, Lord. (1920). XXI. On resonant reflexion of sound from a perforated wall. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(230), 225-233. doi:10.1080/14786440208636033 es_ES
dc.description.references Sobnack, M. B., Tan, W. C., Wanstall, N. P., Preist, T. W., & Sambles, J. R. (1998). Stationary Surface Plasmons on a Zero-Order Metal Grating. Physical Review Letters, 80(25), 5667-5670. doi:10.1103/physrevlett.80.5667 es_ES
dc.description.references López-Rios, T., Mendoza, D., García-Vidal, F. J., Sánchez-Dehesa, J., & Pannetier, B. (1998). Surface Shape Resonances in Lamellar Metallic Gratings. Physical Review Letters, 81(3), 665-668. doi:10.1103/physrevlett.81.665 es_ES
dc.description.references Porto, J. A., García-Vidal, F. J., & Pendry, J. B. (1999). Transmission Resonances on Metallic Gratings with Very Narrow Slits. Physical Review Letters, 83(14), 2845-2848. doi:10.1103/physrevlett.83.2845 es_ES
dc.description.references Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., & Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668), 667-669. doi:10.1038/35570 es_ES
dc.description.references Baida, F. I., & Van Labeke, D. (2003). Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays. Physical Review B, 67(15). doi:10.1103/physrevb.67.155314 es_ES
dc.description.references Lockyear, M. J., Hibbins, A. P., Sambles, J. R., & Lawrence, C. R. (2005). Microwave Transmission through a Single Subwavelength Annular Aperture in a Metal Plate. Physical Review Letters, 94(19). doi:10.1103/physrevlett.94.193902 es_ES
dc.description.references Lomakin, V., Li, S., & Michielssen, E. (2007). Transmission through and wave guidance on metal plates perforated by periodic arrays of through-holes of subwavelength coaxial cross-section. Microwave and Optical Technology Letters, 49(7), 1554-1558. doi:10.1002/mop.22484 es_ES
dc.description.references Roberts, A. (2010). Beam transmission through hole arrays. Optics Express, 18(3), 2528. doi:10.1364/oe.18.002528 es_ES
dc.description.references Baida, F. I., Belkhir, A., Arar, O., Barakat, E. H., Dahdah, J., Chemrouk, C., … Bernal, M.-P. (2010). Enhanced optical transmission by light coaxing: Mechanism of the TEM-mode excitation. Micron, 41(7), 742-745. doi:10.1016/j.micron.2010.06.009 es_ES
dc.description.references White, J. S., Veronis, G., Yu, Z., Barnard, E. S., Chandran, A., Fan, S., & Brongersma, M. L. (2009). Extraordinary optical absorption through subwavelength slits. Optics Letters, 34(5), 686. doi:10.1364/ol.34.000686 es_ES
dc.description.references Lansey, E., Hooper, I. R., Gollub, J. N., Hibbins, A. P., & Crouse, D. T. (2012). Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays. Optics Express, 20(22), 24226. doi:10.1364/oe.20.024226 es_ES
dc.description.references Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192 es_ES
dc.description.references Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect Metamaterial Absorber. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207402 es_ES
dc.description.references Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 16(10), 7181. doi:10.1364/oe.16.007181 es_ES
dc.description.references Cheng, Y., Nie, Y., & Gong, R. (2013). A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 48, 415-421. doi:10.1016/j.optlastec.2012.11.016 es_ES
dc.description.references Baida, F. I., & Van Labeke, D. (2002). Light transmission by subwavelength annular aperture arrays in metallic films. Optics Communications, 209(1-3), 17-22. doi:10.1016/s0030-4018(02)01690-5 es_ES
dc.description.references Haftel, M. I., Schlockermann, C., & Blumberg, G. (2006). Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons. Physical Review B, 74(23). doi:10.1103/physrevb.74.235405 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem