Mäkelä, H., & Pekkarinen, A. (2004). Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 196(2-3), 245-255. doi:10.1016/j.foreco.2004.02.049
MCROBERTS, R., & TOMPPO, E. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4), 412-419. doi:10.1016/j.rse.2006.09.034
Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4
[+]
Mäkelä, H., & Pekkarinen, A. (2004). Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 196(2-3), 245-255. doi:10.1016/j.foreco.2004.02.049
MCROBERTS, R., & TOMPPO, E. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4), 412-419. doi:10.1016/j.rse.2006.09.034
Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4
Hyyppä, J., Yu, X., Hyyppä, H., Vastaranta, M., Holopainen, M., Kukko, A., … Alho, P. (2012). Advances in Forest Inventory Using Airborne Laser Scanning. Remote Sensing, 4(5), 1190-1207. doi:10.3390/rs4051190
Lovell, J. L., Jupp, D. L. B., Newnham, G. J., Coops, N. C., & Culvenor, D. S. (2005). Simulation study for finding optimal lidar acquisition parameters for forest height retrieval. Forest Ecology and Management, 214(1-3), 398-412. doi:10.1016/j.foreco.2004.07.077
Frazer, G. W., Magnussen, S., Wulder, M. A., & Niemann, K. O. (2011). Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sensing of Environment, 115(2), 636-649. doi:10.1016/j.rse.2010.10.008
Martin Bollandsås, O., & Næsset, E. (2007). Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data. Scandinavian Journal of Forest Research, 22(1), 33-47. doi:10.1080/02827580601138264
Solberg, S., Næsset, E., Hanssen, K. H., & Christiansen, E. (2006). Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of Environment, 102(3-4), 364-376. doi:10.1016/j.rse.2006.03.001
Jaskierniak, D., Lane, P. N. J., Robinson, A., & Lucieer, A. (2011). Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions. Remote Sensing of Environment, 115(2), 573-585. doi:10.1016/j.rse.2010.10.003
García, M., Riaño, D., Chuvieco, E., & Danson, F. M. (2010). Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816-830. doi:10.1016/j.rse.2009.11.021
Thomas, V., Treitz, P., McCaughey, J. H., & Morrison, I. (2006). Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density. Canadian Journal of Forest Research, 36(1), 34-47. doi:10.1139/x05-230
Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., & Trofymow, J. A. (Tony). (2007). Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees, 21(3), 295-310. doi:10.1007/s00468-006-0119-6
Richardson, J. J., & Moskal, L. M. (2011). Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sensing of Environment, 115(10), 2640-2651. doi:10.1016/j.rse.2011.05.020
Chasmer, L., Hopkinson, C., Smith, B., & Treitz, P. (2006). Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns. Photogrammetric Engineering & Remote Sensing, 72(12), 1359-1367. doi:10.14358/pers.72.12.1359
Weber, T. C., & Boss, D. E. (2009). Use of LiDAR and supplemental data to estimate forest maturity in Charles County, MD, USA. Forest Ecology and Management, 258(9), 2068-2075. doi:10.1016/j.foreco.2009.08.001
Falkowski, M. J., Smith, A. M. ., Hudak, A. T., Gessler, P. E., Vierling, L. A., & Crookston, N. L. (2006). Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Canadian Journal of Remote Sensing, 32(2), 153-161. doi:10.5589/m06-005
Falkowski, M. J., Evans, J. S., Martinuzzi, S., Gessler, P. E., & Hudak, A. T. (2009). Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment, 113(5), 946-956. doi:10.1016/j.rse.2009.01.003
Erdody, T. L., & Moskal, L. M. (2010). Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114(4), 725-737. doi:10.1016/j.rse.2009.11.002
Jakubowski, M. K., Guo, Q., & Kelly, M. (2013). Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sensing of Environment, 130, 245-253. doi:10.1016/j.rse.2012.11.024
Woods, M., Lim, K., & Treitz, P. (2008). Predicting forest stand variables from LiDAR data in the Great Lakes St. Lawrence forest of Ontario. The Forestry Chronicle, 84(6), 827-839. doi:10.5558/tfc84827-6
Yu, X., Hyyppä, J., Vastaranta, M., Holopainen, M., & Viitala, R. (2011). Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 28-37. doi:10.1016/j.isprsjprs.2010.08.003
Bortolot, Z. J. (2006). Using Tree Clusters to Derive Forest Properties from Small Footprint Lidar Data. Photogrammetric Engineering & Remote Sensing, 72(12), 1389-1397. doi:10.14358/pers.72.12.1389
Rowell, E., Seielstad, C., Vierling, L., Queen, Ll., & Shepperd, W. (2006). Using Laser Altimetry-based Segmentation to Refine Automated Tree Identification in Managed Forests of the Black Hills, South Dakota. Photogrammetric Engineering & Remote Sensing, 72(12), 1379-1388. doi:10.14358/pers.72.12.1379
Holmgren, J. (2004). Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scandinavian Journal of Forest Research, 19(6), 543-553. doi:10.1080/02827580410019472
Yu, X., Hyyppä, J., Kaartinen, H., & Maltamo, M. (2004). Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sensing of Environment, 90(4), 451-462. doi:10.1016/j.rse.2004.02.001
Hyde, P., Nelson, R., Kimes, D., & Levine, E. (2007). Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106(1), 28-38. doi:10.1016/j.rse.2006.07.017
Goodwin, N. R., Coops, N. C., & Culvenor, D. S. (2006). Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment, 103(2), 140-152. doi:10.1016/j.rse.2006.03.003
Bater, C. W., Wulder, M. A., Coops, N. C., Nelson, R. F., Hilker, T., & Nasset, E. (2011). Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 49(6), 2385-2392. doi:10.1109/tgrs.2010.2099232
Magnussen, S., Næsset, E., & Gobakken, T. (2010). Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce. Remote Sensing of Environment, 114(4), 700-712. doi:10.1016/j.rse.2009.11.007
Mauro, F., Valbuena, R., Manzanera, J. A., & García-Abril, A. (2011). Influence of Global Navigation Satellite System errors in positioning inventory plots for tree-height distribution studiesThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. Canadian Journal of Forest Research, 41(1), 11-23. doi:10.1139/x10-164
Gobakken, T., & Næsset, E. (2009). Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 39(5), 1036-1052. doi:10.1139/x09-025
White, J. C., Wulder, M. A., Varhola, A., Vastaranta, M., Coops, N. C., Cook, B. D., … Woods, M. (2013). A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. The Forestry Chronicle, 89(06), 722-723. doi:10.5558/tfc2013-132
Gobakken, T., & Næsset, E. (2008). Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 38(5), 1095-1109. doi:10.1139/x07-219
Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Hermosilla, T. (2011). Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521-538. doi:10.1080/17538947.2010.533201
Sutton, R. N., & Hall, E. L. (1972). Texture Measures for Automatic Classification of Pulmonary Disease. IEEE Transactions on Computers, C-21(7), 667-676. doi:10.1109/t-c.1972.223572
Ruiz, L. A., Recio, J. A., Fernández-Sarría, A., & Hermosilla, T. (2011). A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 76(2), 284-296. doi:10.1016/j.compag.2011.02.007
Treitz, P., Lim, K., Woods, M., Pitt, D., Nesbitt, D., & Etheridge, D. (2012). LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4(4), 830-848. doi:10.3390/rs4040830
[-]