- -

Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates

Show full item record

Ruiz Fernández, LÁ.; Hermosilla, T.; Mauro, F.; Godino, M. (2014). Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests. 5(5):936-951. https://doi.org/10.3390/f5050936

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61252

Files in this item

Item Metadata

Title: Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates
Author: Ruiz Fernández, Luis Ángel Hermosilla, T. Mauro, Francisco Godino, Miguel
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Issued date:
Abstract:
This paper assesses the combined effect of field plot size and LiDAR density on the estimation of four forest structure attributes: volume, total biomass, basal area and canopy cover. A total of 21 different plot sizes ...[+]
Subjects: Forest inventory , LiDAR , Plot size , Data density , Forest structure , Forest attributes , Remote sensing
Copyrigths: Reconocimiento (by)
Source:
Forests. (issn: 1999-4907 )
DOI: 10.3390/f5050936
Publisher:
MDPI AG, Basel, Switzerland
Publisher version: http://dx.doi.org/10.3390/f5050936
Project ID:
info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/
Description: Licencia Creative Commons: Attribution 3.0 Unported (CC BY 3.0)
Thanks:
The authors wish to thank the Spanish Ministry of Industry, Tourism and Trade, and the Spanish Ministry of Science and Innovation for the financial support provided in the framework of the projects InForest, and ...[+]
Type: Artículo

References

Mäkelä, H., & Pekkarinen, A. (2004). Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 196(2-3), 245-255. doi:10.1016/j.foreco.2004.02.049

MCROBERTS, R., & TOMPPO, E. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4), 412-419. doi:10.1016/j.rse.2006.09.034

Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4 [+]
Mäkelä, H., & Pekkarinen, A. (2004). Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. Forest Ecology and Management, 196(2-3), 245-255. doi:10.1016/j.foreco.2004.02.049

MCROBERTS, R., & TOMPPO, E. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4), 412-419. doi:10.1016/j.rse.2006.09.034

Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4

Hyyppä, J., Yu, X., Hyyppä, H., Vastaranta, M., Holopainen, M., Kukko, A., … Alho, P. (2012). Advances in Forest Inventory Using Airborne Laser Scanning. Remote Sensing, 4(5), 1190-1207. doi:10.3390/rs4051190

Lovell, J. L., Jupp, D. L. B., Newnham, G. J., Coops, N. C., & Culvenor, D. S. (2005). Simulation study for finding optimal lidar acquisition parameters for forest height retrieval. Forest Ecology and Management, 214(1-3), 398-412. doi:10.1016/j.foreco.2004.07.077

Frazer, G. W., Magnussen, S., Wulder, M. A., & Niemann, K. O. (2011). Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sensing of Environment, 115(2), 636-649. doi:10.1016/j.rse.2010.10.008

Martin Bollandsås, O., & Næsset, E. (2007). Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data. Scandinavian Journal of Forest Research, 22(1), 33-47. doi:10.1080/02827580601138264

Solberg, S., Næsset, E., Hanssen, K. H., & Christiansen, E. (2006). Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of Environment, 102(3-4), 364-376. doi:10.1016/j.rse.2006.03.001

Jaskierniak, D., Lane, P. N. J., Robinson, A., & Lucieer, A. (2011). Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions. Remote Sensing of Environment, 115(2), 573-585. doi:10.1016/j.rse.2010.10.003

García, M., Riaño, D., Chuvieco, E., & Danson, F. M. (2010). Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment, 114(4), 816-830. doi:10.1016/j.rse.2009.11.021

Thomas, V., Treitz, P., McCaughey, J. H., & Morrison, I. (2006). Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density. Canadian Journal of Forest Research, 36(1), 34-47. doi:10.1139/x05-230

Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., & Trofymow, J. A. (Tony). (2007). Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees, 21(3), 295-310. doi:10.1007/s00468-006-0119-6

Richardson, J. J., & Moskal, L. M. (2011). Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sensing of Environment, 115(10), 2640-2651. doi:10.1016/j.rse.2011.05.020

Chasmer, L., Hopkinson, C., Smith, B., & Treitz, P. (2006). Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns. Photogrammetric Engineering & Remote Sensing, 72(12), 1359-1367. doi:10.14358/pers.72.12.1359

Weber, T. C., & Boss, D. E. (2009). Use of LiDAR and supplemental data to estimate forest maturity in Charles County, MD, USA. Forest Ecology and Management, 258(9), 2068-2075. doi:10.1016/j.foreco.2009.08.001

Falkowski, M. J., Smith, A. M. ., Hudak, A. T., Gessler, P. E., Vierling, L. A., & Crookston, N. L. (2006). Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Canadian Journal of Remote Sensing, 32(2), 153-161. doi:10.5589/m06-005

Falkowski, M. J., Evans, J. S., Martinuzzi, S., Gessler, P. E., & Hudak, A. T. (2009). Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment, 113(5), 946-956. doi:10.1016/j.rse.2009.01.003

Erdody, T. L., & Moskal, L. M. (2010). Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114(4), 725-737. doi:10.1016/j.rse.2009.11.002

Jakubowski, M. K., Guo, Q., & Kelly, M. (2013). Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sensing of Environment, 130, 245-253. doi:10.1016/j.rse.2012.11.024

Woods, M., Lim, K., & Treitz, P. (2008). Predicting forest stand variables from LiDAR data in the Great Lakes St. Lawrence forest of Ontario. The Forestry Chronicle, 84(6), 827-839. doi:10.5558/tfc84827-6

Yu, X., Hyyppä, J., Vastaranta, M., Holopainen, M., & Viitala, R. (2011). Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 28-37. doi:10.1016/j.isprsjprs.2010.08.003

Bortolot, Z. J. (2006). Using Tree Clusters to Derive Forest Properties from Small Footprint Lidar Data. Photogrammetric Engineering & Remote Sensing, 72(12), 1389-1397. doi:10.14358/pers.72.12.1389

Rowell, E., Seielstad, C., Vierling, L., Queen, Ll., & Shepperd, W. (2006). Using Laser Altimetry-based Segmentation to Refine Automated Tree Identification in Managed Forests of the Black Hills, South Dakota. Photogrammetric Engineering & Remote Sensing, 72(12), 1379-1388. doi:10.14358/pers.72.12.1379

Holmgren, J. (2004). Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scandinavian Journal of Forest Research, 19(6), 543-553. doi:10.1080/02827580410019472

Yu, X., Hyyppä, J., Kaartinen, H., & Maltamo, M. (2004). Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sensing of Environment, 90(4), 451-462. doi:10.1016/j.rse.2004.02.001

Hyde, P., Nelson, R., Kimes, D., & Levine, E. (2007). Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106(1), 28-38. doi:10.1016/j.rse.2006.07.017

Goodwin, N. R., Coops, N. C., & Culvenor, D. S. (2006). Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment, 103(2), 140-152. doi:10.1016/j.rse.2006.03.003

Bater, C. W., Wulder, M. A., Coops, N. C., Nelson, R. F., Hilker, T., & Nasset, E. (2011). Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 49(6), 2385-2392. doi:10.1109/tgrs.2010.2099232

Magnussen, S., Næsset, E., & Gobakken, T. (2010). Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce. Remote Sensing of Environment, 114(4), 700-712. doi:10.1016/j.rse.2009.11.007

Mauro, F., Valbuena, R., Manzanera, J. A., & García-Abril, A. (2011). Influence of Global Navigation Satellite System errors in positioning inventory plots for tree-height distribution studiesThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. Canadian Journal of Forest Research, 41(1), 11-23. doi:10.1139/x10-164

Gobakken, T., & Næsset, E. (2009). Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 39(5), 1036-1052. doi:10.1139/x09-025

White, J. C., Wulder, M. A., Varhola, A., Vastaranta, M., Coops, N. C., Cook, B. D., … Woods, M. (2013). A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. The Forestry Chronicle, 89(06), 722-723. doi:10.5558/tfc2013-132

Gobakken, T., & Næsset, E. (2008). Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 38(5), 1095-1109. doi:10.1139/x07-219

Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Hermosilla, T. (2011). Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521-538. doi:10.1080/17538947.2010.533201

Sutton, R. N., & Hall, E. L. (1972). Texture Measures for Automatic Classification of Pulmonary Disease. IEEE Transactions on Computers, C-21(7), 667-676. doi:10.1109/t-c.1972.223572

Ruiz, L. A., Recio, J. A., Fernández-Sarría, A., & Hermosilla, T. (2011). A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 76(2), 284-296. doi:10.1016/j.compag.2011.02.007

Treitz, P., Lim, K., Woods, M., Pitt, D., Nesbitt, D., & Etheridge, D. (2012). LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4(4), 830-848. doi:10.3390/rs4040830

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record