- -

Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrer Ribera, Rosa Belén es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Baldovi, Hermengildo G. es_ES
dc.contributor.author Reinsch, Helge es_ES
dc.contributor.author Stock, Norbert es_ES
dc.date.accessioned 2016-03-01T15:47:47Z
dc.date.issued 2014-04-04
dc.identifier.issn 1439-4235
dc.identifier.uri http://hdl.handle.net/10251/61333
dc.description.abstract The photochemistry of two isostructural metal-organic frameworks based on 5-amino/5-formamidoisophthalate (CAU-10-NH2/NHCHO) or mixed-linker 5-amino/5-formamido- and 5-nitroisophthalate (CAU-10-NO2/NH2/NHCHO) has been studied using laser flash photolysis. 355 nm excitation of CAU-10-NH2/NHCHO leads to a transient absorption spectrum characterized by a broad continuous absorption from 380 to 800 nm that was attributed to the presence of holes (440 nm) and electrons (600 nm) based on iPrOH and N2O quenching, respectively. In contrast, no transients were observed for the isostructural mixed-linker CAU-10-NO2/NH2/NHCHO, data that is compatible with the uniform distribution of linkers 5-amino/5-formamido/5-nitroisophthalate as charge-transfer complex pairs. The same effect of quenching of 5-aminoisophthalate transients by 5-nitroisophthalate was also observed in aqueous solution (pH 9) but with much lower strength. Using a simple Stern-Volmer formalism allowed the estimation of the interaction of 5-aminoisophthalate with 5-nitroisophthalate in MOF to be 5.2x10(4) times stronger than in the aqueous phase. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ2010-18671 and CTQ2012-32315) and Generalidad Valenciana (Prometeo 2012-019) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemPhysChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject charge transfer es_ES
dc.subject laser flash photolysis es_ES
dc.subject metal-organic frameworks es_ES
dc.subject photochemistry es_ES
dc.subject photo-induced charge separation es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10 es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cphc.201301178
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F019/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ferrer Ribera, RB.; Alvaro Rodríguez, MM.; Baldovi, HG.; Reinsch, H.; Stock, N. (2014). Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10. ChemPhysChem. 15(5):924-928. https://doi.org/10.1002/cphc.201301178 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cphc.201301178 es_ES
dc.description.upvformatpinicio 924 es_ES
dc.description.upvformatpfin 928 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 268228 es_ES
dc.identifier.eissn 1439-7641
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e es_ES
dc.description.references O’Keeffe, M. (2009). Design of MOFs and intellectual content in reticular chemistry: a personal view. Chemical Society Reviews, 38(5), 1215. doi:10.1039/b802802h es_ES
dc.description.references Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k es_ES
dc.description.references Wißmann, G., Schaate, A., Lilienthal, S., Bremer, I., Schneider, A. M., & Behrens, P. (2012). Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials, 152, 64-70. doi:10.1016/j.micromeso.2011.12.010 es_ES
dc.description.references Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 es_ES
dc.description.references Horcajada, P., Salles, F., Wuttke, S., Devic, T., Heurtaux, D., Maurin, G., … Serre, C. (2011). How Linker’s Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88. Journal of the American Chemical Society, 133(44), 17839-17847. doi:10.1021/ja206936e es_ES
dc.description.references Liu, Y.-Y., Leus, K., Grzywa, M., Weinberger, D., Strubbe, K., Vrielinck, H., … Van Der Voort, P. (2011). Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3). European Journal of Inorganic Chemistry, 2012(16), 2819-2827. doi:10.1002/ejic.201101099 es_ES
dc.description.references Burrows, A. D. (2011). Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 13(11), 3623. doi:10.1039/c0ce00568a es_ES
dc.description.references Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445 es_ES
dc.description.references Reinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355b es_ES
dc.description.references García, H., & Ferrer, B. (s. f.). CHAPTER 12. Photocatalysis by MOFs. Metal Organic Frameworks as Heterogeneous Catalysts, 365-383. doi:10.1039/9781849737586-00365 es_ES
dc.description.references Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., … Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem. Commun., (20), 2300-2301. doi:10.1039/b407246d es_ES
dc.description.references Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 es_ES
dc.description.references Lopez, H. A., Dhakshinamoorthy, A., Ferrer, B., Atienzar, P., Alvaro, M., & Garcia, H. (2011). Photochemical Response of Commercial MOFs: Al2(BDC)3 and Its Use As Active Material in Photovoltaic Devices. The Journal of Physical Chemistry C, 115(45), 22200-22206. doi:10.1021/jp206919m es_ES
dc.description.references De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411 es_ES
dc.description.references Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526 es_ES
dc.description.references Llabrés i Xamena, F. X., Corma, A., & Garcia, H. (2007). Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111(1), 80-85. doi:10.1021/jp063600e es_ES
dc.description.references Álvaro, M., Corma, A., Ferrer, B., García, H., & Palomares, E. (2004). Laser flash photolysis study of anthracene/viologen charge transfer complex in non-polar, dealuminated zeolites. Phys. Chem. Chem. Phys., 6(6), 1345-1349. doi:10.1039/b313477f es_ES
dc.description.references Ceroni, P., & Balzani, V. (2011). Photoinduced Energy and Electron Transfer Processes. The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques, 21-38. doi:10.1007/978-94-007-2042-8_2 es_ES
dc.description.references Montalti, M., Credi, A., Prodi, L., & Gandolfi, M. T. (2006). Handbook of Photochemistry. doi:10.1201/9781420015195 es_ES
dc.description.references Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m es_ES
dc.description.references Yoon, K. B. (1993). Electron- and charge-transfer reactions within zeolites. Chemical Reviews, 93(1), 321-339. doi:10.1021/cr00017a015 es_ES
dc.description.references Kochi, J. K., Carlson, R., Ragnarsson, U., Ericsson, T., Yamada, H., Långström, B., & Tokii, T. (1990). Chemical Activation by Electron Transfer in Charge-Transfer Complexes. Formation and Reactions of Transient Ion Radical Pairs. Acta Chemica Scandinavica, 44, 409-432. doi:10.3891/acta.chem.scand.44-0409 es_ES
dc.description.references McCarthy, B. D., Hontz, E. R., Yost, S. R., Van Voorhis, T., & Dincă, M. (2013). Charge Transfer or J-Coupling? Assignment of an Unexpected Red-Shifted Absorption Band in a Naphthalenediimide-Based Metal–Organic Framework. The Journal of Physical Chemistry Letters, 4(3), 453-458. doi:10.1021/jz302076s es_ES
dc.description.references Liu, Y.-Y., Leus, K., Bogaerts, T., Hemelsoet, K., Bruneel, E., Van Speybroeck, V., & Van Der Voort, P. (2013). Bimetallic-Organic Framework as a Zero-Leaching Catalyst in the Aerobic Oxidation of Cyclohexene. ChemCatChem, 5(12), 3657-3664. doi:10.1002/cctc.201300529 es_ES
dc.description.references Kelly, G., Willsher, C. J., Wilkinson, F., Netto-Ferreira, J. C., Olea, A., Weir, D., … Scaiano, J. C. (1990). Intrazeolite photochemistry. VI. Diffuse reflectance laser flash photolysis and product studies of diphenylmethyl radicals on solid supports. Canadian Journal of Chemistry, 68(6), 812-819. doi:10.1139/v90-129 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem