Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrer Ribera, Rosa Belén | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | Baldovi, Hermengildo G. | es_ES |
dc.contributor.author | Reinsch, Helge | es_ES |
dc.contributor.author | Stock, Norbert | es_ES |
dc.date.accessioned | 2016-03-01T15:47:47Z | |
dc.date.issued | 2014-04-04 | |
dc.identifier.issn | 1439-4235 | |
dc.identifier.uri | http://hdl.handle.net/10251/61333 | |
dc.description.abstract | The photochemistry of two isostructural metal-organic frameworks based on 5-amino/5-formamidoisophthalate (CAU-10-NH2/NHCHO) or mixed-linker 5-amino/5-formamido- and 5-nitroisophthalate (CAU-10-NO2/NH2/NHCHO) has been studied using laser flash photolysis. 355 nm excitation of CAU-10-NH2/NHCHO leads to a transient absorption spectrum characterized by a broad continuous absorption from 380 to 800 nm that was attributed to the presence of holes (440 nm) and electrons (600 nm) based on iPrOH and N2O quenching, respectively. In contrast, no transients were observed for the isostructural mixed-linker CAU-10-NO2/NH2/NHCHO, data that is compatible with the uniform distribution of linkers 5-amino/5-formamido/5-nitroisophthalate as charge-transfer complex pairs. The same effect of quenching of 5-aminoisophthalate transients by 5-nitroisophthalate was also observed in aqueous solution (pH 9) but with much lower strength. Using a simple Stern-Volmer formalism allowed the estimation of the interaction of 5-aminoisophthalate with 5-nitroisophthalate in MOF to be 5.2x10(4) times stronger than in the aqueous phase. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ2010-18671 and CTQ2012-32315) and Generalidad Valenciana (Prometeo 2012-019) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemPhysChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | charge transfer | es_ES |
dc.subject | laser flash photolysis | es_ES |
dc.subject | metal-organic frameworks | es_ES |
dc.subject | photochemistry | es_ES |
dc.subject | photo-induced charge separation | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10 | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cphc.201301178 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F019/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Ferrer Ribera, RB.; Alvaro Rodríguez, MM.; Baldovi, HG.; Reinsch, H.; Stock, N. (2014). Photophysical Evidence of Charge-Transfer-Complex Pairs in Mixed-Linker 5-Amino/5-Nitroisophthalate CAU-10. ChemPhysChem. 15(5):924-928. https://doi.org/10.1002/cphc.201301178 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cphc.201301178 | es_ES |
dc.description.upvformatpinicio | 924 | es_ES |
dc.description.upvformatpfin | 928 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 268228 | es_ES |
dc.identifier.eissn | 1439-7641 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e | es_ES |
dc.description.references | O’Keeffe, M. (2009). Design of MOFs and intellectual content in reticular chemistry: a personal view. Chemical Society Reviews, 38(5), 1215. doi:10.1039/b802802h | es_ES |
dc.description.references | Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034 | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k | es_ES |
dc.description.references | Wißmann, G., Schaate, A., Lilienthal, S., Bremer, I., Schneider, A. M., & Behrens, P. (2012). Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials, 152, 64-70. doi:10.1016/j.micromeso.2011.12.010 | es_ES |
dc.description.references | Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 | es_ES |
dc.description.references | Horcajada, P., Salles, F., Wuttke, S., Devic, T., Heurtaux, D., Maurin, G., … Serre, C. (2011). How Linker’s Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88. Journal of the American Chemical Society, 133(44), 17839-17847. doi:10.1021/ja206936e | es_ES |
dc.description.references | Liu, Y.-Y., Leus, K., Grzywa, M., Weinberger, D., Strubbe, K., Vrielinck, H., … Van Der Voort, P. (2011). Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3). European Journal of Inorganic Chemistry, 2012(16), 2819-2827. doi:10.1002/ejic.201101099 | es_ES |
dc.description.references | Burrows, A. D. (2011). Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm, 13(11), 3623. doi:10.1039/c0ce00568a | es_ES |
dc.description.references | Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445 | es_ES |
dc.description.references | Reinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355b | es_ES |
dc.description.references | García, H., & Ferrer, B. (s. f.). CHAPTER 12. Photocatalysis by MOFs. Metal Organic Frameworks as Heterogeneous Catalysts, 365-383. doi:10.1039/9781849737586-00365 | es_ES |
dc.description.references | Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., … Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem. Commun., (20), 2300-2301. doi:10.1039/b407246d | es_ES |
dc.description.references | Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 | es_ES |
dc.description.references | Lopez, H. A., Dhakshinamoorthy, A., Ferrer, B., Atienzar, P., Alvaro, M., & Garcia, H. (2011). Photochemical Response of Commercial MOFs: Al2(BDC)3 and Its Use As Active Material in Photovoltaic Devices. The Journal of Physical Chemistry C, 115(45), 22200-22206. doi:10.1021/jp206919m | es_ES |
dc.description.references | De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411 | es_ES |
dc.description.references | Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526 | es_ES |
dc.description.references | Llabrés i Xamena, F. X., Corma, A., & Garcia, H. (2007). Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111(1), 80-85. doi:10.1021/jp063600e | es_ES |
dc.description.references | Álvaro, M., Corma, A., Ferrer, B., García, H., & Palomares, E. (2004). Laser flash photolysis study of anthracene/viologen charge transfer complex in non-polar, dealuminated zeolites. Phys. Chem. Chem. Phys., 6(6), 1345-1349. doi:10.1039/b313477f | es_ES |
dc.description.references | Ceroni, P., & Balzani, V. (2011). Photoinduced Energy and Electron Transfer Processes. The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques, 21-38. doi:10.1007/978-94-007-2042-8_2 | es_ES |
dc.description.references | Montalti, M., Credi, A., Prodi, L., & Gandolfi, M. T. (2006). Handbook of Photochemistry. doi:10.1201/9781420015195 | es_ES |
dc.description.references | Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m | es_ES |
dc.description.references | Yoon, K. B. (1993). Electron- and charge-transfer reactions within zeolites. Chemical Reviews, 93(1), 321-339. doi:10.1021/cr00017a015 | es_ES |
dc.description.references | Kochi, J. K., Carlson, R., Ragnarsson, U., Ericsson, T., Yamada, H., Långström, B., & Tokii, T. (1990). Chemical Activation by Electron Transfer in Charge-Transfer Complexes. Formation and Reactions of Transient Ion Radical Pairs. Acta Chemica Scandinavica, 44, 409-432. doi:10.3891/acta.chem.scand.44-0409 | es_ES |
dc.description.references | McCarthy, B. D., Hontz, E. R., Yost, S. R., Van Voorhis, T., & Dincă, M. (2013). Charge Transfer or J-Coupling? Assignment of an Unexpected Red-Shifted Absorption Band in a Naphthalenediimide-Based Metal–Organic Framework. The Journal of Physical Chemistry Letters, 4(3), 453-458. doi:10.1021/jz302076s | es_ES |
dc.description.references | Liu, Y.-Y., Leus, K., Bogaerts, T., Hemelsoet, K., Bruneel, E., Van Speybroeck, V., & Van Der Voort, P. (2013). Bimetallic-Organic Framework as a Zero-Leaching Catalyst in the Aerobic Oxidation of Cyclohexene. ChemCatChem, 5(12), 3657-3664. doi:10.1002/cctc.201300529 | es_ES |
dc.description.references | Kelly, G., Willsher, C. J., Wilkinson, F., Netto-Ferreira, J. C., Olea, A., Weir, D., … Scaiano, J. C. (1990). Intrazeolite photochemistry. VI. Diffuse reflectance laser flash photolysis and product studies of diphenylmethyl radicals on solid supports. Canadian Journal of Chemistry, 68(6), 812-819. doi:10.1139/v90-129 | es_ES |