- -

Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escarcega-Bobadilla, Martha V. es_ES
dc.contributor.author Zelada-Guillen, Gustavo A. es_ES
dc.contributor.author Pyrlin, Sergey V. es_ES
dc.contributor.author Wegrzyn, Marcin es_ES
dc.contributor.author Ramos, Marta M. D. es_ES
dc.contributor.author Giménez Torres, Enrique es_ES
dc.contributor.author Stewart, Andrew es_ES
dc.contributor.author Maier, Gerhard es_ES
dc.contributor.author Kleij, Arjan W. es_ES
dc.date.accessioned 2016-03-03T12:09:13Z
dc.date.available 2016-03-03T12:09:13Z
dc.date.issued 2013-11
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/61402
dc.description.abstract [EN] Molecular electronics based on structures ordered as neural networks emerges as the next evolutionary milestone in the construction of nanodevices with unprecedented applications. However, the straightforward formation of geometrically defined and interconnected nanostructures is crucial for the production of electronic circuitry nanoequivalents. Here we report on the molecularly fine-tuned self-assembly of tetrakis-Schiff base compounds into nanosized rings interconnected by unusually large nanorods providing a set of connections that mimic a biological network of neurons. The networks are produced through self-assembly resulting from the molecular conformation and noncovalent intermolecular interactions. These features can be easily generated on flat surfaces and in a polymeric matrix by casting from solution under ambient conditions. The structures can be used to guide the position of electron-transporting agents such as carbon nanotubes on a surface or in a polymer matrix to create electrically conducting networks that can find direct use in constructing nanoelectronic circuits. es_ES
dc.description.sponsorship The research leading to these results has received funding from ICIQ, ICREA, the Spanish Ministerio de Economia y Competitividad (MINECO) through project CTQ2011-27385 and the European Community Seventh Framework Program (FP7-PEOPLE-ITN-2008, CONTACT consortium) under grant agreement number 238363. We acknowledge E. C. Escudero-Adan, M. Martinez-Belmonte and E. Martin from the X-ray department of ICIQ for crystallographic analysis, and M. Moncusi, N. Argany, R. Marimon, M. Stefanova and L. Vojkuvka from the Servei de Recursos Cientifics i Tecnics from Universitat Rovira i Virgili (Tarragona, Spain). en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group: Nature Communications es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Rings es_ES
dc.subject Nanostructures es_ES
dc.subject Nanoparticles es_ES
dc.subject Architectures es_ES
dc.subject Evaporation es_ES
dc.subject Principles es_ES
dc.subject Circuits es_ES
dc.subject Model es_ES
dc.subject Flow es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms3648
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-27385/ES/CONVERSION CATALITICA DE CO2 SOBRE CONDICIONES SUAVES UTILIZANDO COMPLEJOS DE TIPO METALLOSALEN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Escarcega-Bobadilla, MV.; Zelada-Guillen, GA.; Pyrlin, SV.; Wegrzyn, M.; Ramos, MMD.; Giménez Torres, E.; Stewart, A.... (2013). Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nature Communications. 4:2648-2648. https://doi.org/10.1038/ncomms3648 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms3648 es_ES
dc.description.upvformatpinicio 2648 es_ES
dc.description.upvformatpfin 2648 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.senia 259884 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Institució Catalana de Recerca i Estudis Avançats es_ES
dc.contributor.funder Institut Català d'Investigació Química es_ES
dc.description.references Champness, N. R. Making the right connections. Nat. Chem. 4, 149–150 (2012). es_ES
dc.description.references Hopfield, J. J. & Tank, D. W. Computing with neural circuits: A model. Science 233, 625–633 (1986). es_ES
dc.description.references Andres, P. R. et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996). es_ES
dc.description.references Eichen, Y., Braun, E., Sivan, U. & Ben-Yoseph, G. Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym. 49, 663–670 (1998). es_ES
dc.description.references Kawakami, T. et al. Possibilities of molecule-based spintronics of DNA wires, sheets, and related materials. Int. J. Quantum Chem. 105, 655–671 (2005). es_ES
dc.description.references Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Topological generalizations of network motifs. Phys. Rev. E 70, 031909 (2004). es_ES
dc.description.references Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687–691 (2007). es_ES
dc.description.references Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012). es_ES
dc.description.references Alivisatos, A. P. et al. From molecules to materials: current trends and future directions. Adv. Mater. 10, 1297–1336 (1998). es_ES
dc.description.references Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929). es_ES
dc.description.references Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012). es_ES
dc.description.references De Graaf, J. & Manna, L. A roadmap for the assembly of polyhedral particles. Science 337, 417–418 (2012). es_ES
dc.description.references Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998). es_ES
dc.description.references Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997). es_ES
dc.description.references Mann, S. The chemistry of form. Angew. Chem. Int. Ed. 39, 3392–3406 (2000). es_ES
dc.description.references Sakakibara, K., Hill, J. P. & Ariga, K. Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7, 1288–1308 (2011). es_ES
dc.description.references Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012). es_ES
dc.description.references Ackermann, D., Jester, S.-S. & Famulok, M. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew. Chem. Int. Ed. 27, 6771–6775 (2012). es_ES
dc.description.references Marx, J. L. Microtubules: versatile organelles. Science 181, 1236–1237 (1973). es_ES
dc.description.references Heus, H. A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991). es_ES
dc.description.references Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998). es_ES
dc.description.references Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003). es_ES
dc.description.references Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–365 (2012). es_ES
dc.description.references Clark, A. W. & Cooper, J. M. Nanogap ring antennae as plasmonically coupled SERRS substrates. Small 7, 119–125 (2011). es_ES
dc.description.references Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007). es_ES
dc.description.references Frischmann, P. D., Guieu, S., Tabeshi, R. & MacLachlan, M. J. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 132, 7668–7675 (2010). es_ES
dc.description.references Frischmann, P. D. et al. Capsule formation, carboxylate exchange, and DFT exploration of cadmium cluster metallocavitands: highly dynamic supramolecules. J. Am. Chem. Soc. 132, 3893–3908 (2010). es_ES
dc.description.references Akine, S., Hotate, S. & Nabeshima, T. A molecular leverage for helicity control and helix Inversion. J. Am. Chem. Soc. 133, 13868–13871 (2011). es_ES
dc.description.references Salassa, G. et al. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level. J. Am. Chem. Soc. 134, 7186–7192 (2012). es_ES
dc.description.references Escárcega-Bobadilla, M. V., Salassa, G., Martínez Belmonte, M., Escudero-Adán, E. C. & Kleij, A. W. Versatile switching in substrate topicity: supramolecular chirality induction in di- and trinuclear host complexes. Chem. Eur. J. 18, 6805–6810 (2012). es_ES
dc.description.references Frischmann, P. D., Jiang, J., Hui, J. K.-H., Grzybowski, J. J. & MacLachlan, M. J. Reversible—irreversible approach to Schiff base macrocycles. Access to isomeric macrocycles with multiple salphen pockets. Org. Lett. 10, 1255–1258 (2008). es_ES
dc.description.references Glaser, T. Rational design of single-molecule magnets: a supramolecular approach. Chem. Commun. 47, 116–130 (2011). es_ES
dc.description.references Lee, E. C. et al. Understanding of assembly phenomena by aromatic−aromatic interactions: benzene dimer and the substituted systems. J. Phys. Chem. A 111, 3446–3457 (2007). es_ES
dc.description.references Grybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter. 5, 1110–1128 (2009). es_ES
dc.description.references Martínez Belmonte, M. et al. Self-assembly of Zn(salphen) complexes: steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3′-t-Bu-substituted Zn(salphen) complex. Dalton Trans. 39, 4541–4550 (2010). es_ES
dc.description.references Salassa, G., Castilla, A. M. & Kleij, A. W. Cooperative self-assembly of a macrocyclic Schiff base complex. Dalton Trans. 40, 5236–5243 (2011). es_ES
dc.description.references Hormoz, S. & Brenner, M. P. Design principles for self-assembly with short-range interactions. Proc. Natl Acad. Sci. 108, 5193–5198 (2011). es_ES
dc.description.references Biemans, H. A. M. et al. Hexakis porphyrinato benzenes. A new class of porphyrin arrays. J. Am. Chem. Soc. 120, 11054–11060 (1998). es_ES
dc.description.references Lensen, M. C. et al. Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures. Chem. Eur. J. 10, 831–839 (2004). es_ES
dc.description.references Martin, A., Buguin, A. & Brochard-Wyart, F. Dewetting nucleation centers at soft interfaces. Langmuir. 17, 6553–6559 (2001). es_ES
dc.description.references Schenning, A. P. H. J., Benneker, F. B. G., Geurts, H. P. M., Liu, X. Y. & Nolte, R. J. M. Porphyrin wheels. J. Am. Chem. Soc. 118, 8549–8552 (1996). es_ES
dc.description.references Deegan, R. D. et al. Capillary flow as the cause of ring strains from dried liquid drops. Nature 389, 827–829 (1997). es_ES
dc.description.references Scriven, L. E. & Sternling, C. V. The Marangoni effects. Nature 187, 186–188 (1960). es_ES
dc.description.references Cai, Y. & Newby, B. Z. Marangoni flow-induced self-assembly of hexagonal and stripe-like nanoparticle patterns. J. Am. Chem. Soc. 130, 6076–6077 (2008). es_ES
dc.description.references Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002). es_ES
dc.description.references Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009). es_ES
dc.description.references Gröschnel, A. H. et al. Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 3, 710 (2012). es_ES
dc.description.references Adam, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998). es_ES
dc.description.references Ohara, P. C., Heath, J. R. & Gelbart, W. M. Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew. Chem. Int. Ed. 36, 1077–1080 (1997). es_ES
dc.description.references Xu, J., Xia, J. & Lin, Z. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem. Int. Ed. 46, 1860–1863 (2007). es_ES
dc.description.references Yosef, G. & Rabani, E. Self-assembly of nanoparticles into rings: A lattice-gas model. J. Phys. Chem. B 110, 20965–20972 (2006). es_ES
dc.description.references Khanal, B. P. & Zubarev, E. R. Rings of nanorods. Angew. Chem. Int. Ed. 46, 2195–2198 (2007). es_ES
dc.description.references Wang, Z. et al. One-step, self-assembly, alignment, and patterning of organic semiconductor nanowires by controlled evaporation of confined microfluids. Angew. Chem. Int. Ed. 50, 2811–2815 (2011). es_ES
dc.description.references Hong, S. W. et al. Directed self-assembly of gradient concentric carbon nanotube rings. Adv. Func. Mater. 18, 2114–2122 (2008). es_ES
dc.description.references Palma, M. et al. Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution. J. Am. Chem. Soc. 135, 8440–8443 (2013). es_ES
dc.description.references Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007). es_ES
dc.description.references Soler, J. M. et al. The SIESTA method for ab initio order-n materials simulation. J. Phys. Cond. Matter 14, 2745–2779 (2002). es_ES
dc.description.references Haynes, P. D., Mostof, A. A., Skylaris, C. & Payne, M. C. ONETEP: Linear-scaling density-functional theory with plane-waves. J. Phys. Conf. Ser. 26, 143–148 (2006). es_ES
dc.description.references Valiev, M. et al. NWCHEM: A comprehensive and scalable open-source solution for large scale molecular simulations. Comp. Phys. Commun. 181, 1477–1489 (2010). es_ES
dc.description.references Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem