- -

Optical properties of kelbg-pseudopotential-modelled plasmas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optical properties of kelbg-pseudopotential-modelled plasmas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arkhipov, Yu V. es_ES
dc.contributor.author Ashikbayeva, A. B. es_ES
dc.contributor.author Askaruly, A. es_ES
dc.contributor.author Davletov, A. E. es_ES
dc.contributor.author Tkachenko Gorski, Igor Mijail es_ES
dc.date.accessioned 2016-03-08T11:29:37Z
dc.date.issued 2013-03
dc.identifier.issn 0863-1042
dc.identifier.uri http://hdl.handle.net/10251/61548
dc.description.abstract Simulation data on hydrogen-like plasmas, modelled with the Kelbg pseudopotential, are treated within the classical theory of moments. The possibility is analyzed for the model inverse dielectric function to satisfy five convergent sum rules and other exact relations. The sum rules are the power frequency moments of the loss function and the latter are calculated using the hypernetted chain approximation with the Kelbg interaction potential. An approach to the reconstruction of the Nevanlinna parameter function is proposed and successfully tested against the simulation data. Conclusions on the applicability of the Kelbg potential are drawn and a model is put forward to define the Coulomb dielectric function with the space dispersion taken into account. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion under Grant No. ENE2010-21116-C02-02 and by the Sciences Committee of the Ministry of Education and Sciences of the Republic of Kazakhstan under Grants No. 1128/GF, 1129/GF and 1099/GF. The authors acknowledge the financial support of KazNU and are thankful to I. V. Morozov for providing the numerical data; I. M. T. is grateful to the UPV for the granted sabbatical leave and to the KazNU for its hospitality. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Contributions to Plasma Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Plasmas no ideales es_ES
dc.subject plasmas de modelo es_ES
dc.subject propiedades dinámicas es_ES
dc.subject Pseudopotential model es_ES
dc.subject sum rules es_ES
dc.subject optical properties es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Optical properties of kelbg-pseudopotential-modelled plasmas es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/ctpp.201200113
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2010-21116-C02-02/ES/DINAMICA DE LA CARGA DE GRANOS, INESTABILIDES Y FENOMENOS COLECTIVOS EN LOS PLASMA GRANULARES DE LOS DISPOSITIVOS DE FUSION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//1099%2FGF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//1129%2FGF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//1128%2FGF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Arkhipov, YV.; Ashikbayeva, AB.; Askaruly, A.; Davletov, AE.; Tkachenko Gorski, IM. (2013). Optical properties of kelbg-pseudopotential-modelled plasmas. Contributions to Plasma Physics. 53(4-5):375-384. https://doi.org/10.1002/ctpp.201200113 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ctpp.201200113 es_ES
dc.description.upvformatpinicio 375 es_ES
dc.description.upvformatpfin 384 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 4-5 es_ES
dc.relation.senia 265527 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministry of Education and Science, República de Kazajistán es_ES
dc.description.references Ballester, D., & Tkachenko, I. M. (2005). Two-moment modelling of the dynamic longitudinal conductivity of strongly coupled Coulomb systems. Contributions to Plasma Physics, 45(3-4), 293-299. doi:10.1002/ctpp.200510033 es_ES
dc.description.references Tkachenko, I. M., & Ballester, D. (2005). Reconstruction of internal longitudinal conductivity of non-ideal plasmas by exact relations and sum rules. Journal of Physics: Conference Series, 11, 82-88. doi:10.1088/1742-6596/11/1/008 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Meirkanova, G. M., & Tkachenko, I. M. (2007). Collective and static properties of model two-component plasmas. Physical Review E, 76(2). doi:10.1103/physreve.76.026403 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Davletov, A. E., & Tkachenko, I. M. (2010). Dynamic Properties of One-Component Moderately Coupled Plasmas: The Mixed Löwner-Nevanlinna-Pick Approach. Contributions to Plasma Physics, 50(1), 69-76. doi:10.1002/ctpp.201010015 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Baimbetov, F. B., Ballester, D., Davletov, A. E., Meirkanova, G. M., & Tkachenko, I. M. (2010). Optical Properties of Model Moderately Coupled Plasmas. Contributions to Plasma Physics, 50(2), 165-176. doi:10.1002/ctpp.201010031 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Tkachenko, I. M., & Zwicknagel, G. (2010). Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach. Physical Review E, 81(2). doi:10.1103/physreve.81.026402 es_ES
dc.description.references Filippov, A. V., Starostin, A. N., Tkachenko, I. M., & Fortov, V. E. (2011). Dust acoustic waves in complex plasmas at elevated pressure. Physics Letters A, 376(1), 31-38. doi:10.1016/j.physleta.2011.10.030 es_ES
dc.description.references M. G. Krein A. A. Nudel'man “The Markov moment problem and extremal problems”, Trans. of Math. Monographs, 50, Amer. Math. Soc., Providence, R. I.,1977. es_ES
dc.description.references N. I. Akhiezer “The Classical Moment Problem”, Hafner Publishing Company, N. Y., 1965. es_ES
dc.description.references Adamyan, V., Alcober, J., & Tkachenko, I. (2003). Applied Mathematics Research eXpress, 2003(2), 33. doi:10.1155/s1687120003212028 es_ES
dc.description.references J. Alcober I. M. Tkachenko M. Urrea In: “Integral Methods in Science and Engineering”, Ed. C. Constanda, Eugenia Pérez, Ch. 2 , 11-20, 2009, Birkhäuser Verlag, Basel, Switzerland. es_ES
dc.description.references Reinholz, H., Morozov, I., Röpke, G., & Millat, T. (2004). Internal versus external conductivity of a dense plasma: Many-particle theory and simulations. Physical Review E, 69(6). doi:10.1103/physreve.69.066412 es_ES
dc.description.references Morozov, I., Reinholz, H., Röpke, G., Wierling, A., & Zwicknagel, G. (2005). Molecular dynamics simulations of optical conductivity of dense plasmas. Physical Review E, 71(6). doi:10.1103/physreve.71.066408 es_ES
dc.description.references S. Ichimaru “Statistical Plasma Physics”, Addison-Wesley, New York, 1991, Vol. 1; S. Ichimaru, “Statistical Plasma Physics: Condensed Plasmas” Addison-Wesley, New York, 1994, Vol. 2. es_ES
dc.description.references I. M. Tkachenko Yu. V. Arkhipov A. Askaruly “The Method of Moments and its Applications in Plasma Physics”, LAMBERT Academic Publishing, Saarbrucken, Germany, 2012. es_ES
dc.description.references Maksimov, E. G., Dolgov, O. V., & Dolgov, O. V. (2007). Physics-Uspekhi, 50(9), 933. doi:10.1070/pu2007v050n09abeh006213 es_ES
dc.description.references D. Pines P. Nozièrs “The Theory of Quantum Liquids”, Benjamin, NY, 1966. es_ES
dc.description.references M. J. Corbatón I. M. Tkachenko International Conference on Strongly Coupled Coulomb Systems, Camerino, Italy, 2008, Book of Abstracts, p. 90. es_ES
dc.description.references Kugler, A. A. (1975). Theory of the local field correction in an electron gas. Journal of Statistical Physics, 12(1), 35-87. doi:10.1007/bf01024183 es_ES
dc.description.references Baus, M., Hansen, J.-P., & Sjögren, L. (1981). Electrical conductivity of a strongly coupled hydrogen plasma. Physics Letters A, 82(4), 180-182. doi:10.1016/0375-9601(81)90115-8 es_ES
dc.description.references Reinholz, H. (2005). Dielectric and optical properties of dense plasmas. Annales de Physique, 30(4-5), 1-187. doi:10.1051/anphys:2006004 es_ES
dc.description.references D. N. Zubarev V. Morozov G. Röpke “Relaxation and HydrodynamicProcesses”, Vol. 2 of Statistical Mechanics of Nonequilibrium Processes, Akademie Verlag/Wiley, Berlin, 1997. es_ES
dc.description.references Röpke, G. (1998). Dielectric function and electrical dc conductivity of nonideal plasmas. Physical Review E, 57(4), 4673-4683. doi:10.1103/physreve.57.4673 es_ES
dc.description.references Reinholz, H., Redmer, R., Röpke, G., & Wierling, A. (2000). Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma. Physical Review E, 62(4), 5648-5666. doi:10.1103/physreve.62.5648 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem