- -

Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cajuste, J.F. es_ES
dc.contributor.author García Breijo, Francisco José es_ES
dc.contributor.author Reig Armiñana, José es_ES
dc.contributor.author Lafuente, M.T. es_ES
dc.date.accessioned 2016-03-09T12:48:24Z
dc.date.available 2016-03-09T12:48:24Z
dc.date.issued 2011-10
dc.identifier.issn 1059-910X
dc.identifier.uri http://hdl.handle.net/10251/61608
dc.description This is the accepted version of the following article: Cajuste, J.; García Breijo, FJ.; Reig Armiñana, J.; Lafuente, M. (2011). Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit. Microscopy Research and Technique. 74(1):970-979, which has been published in final form at http://dx.doi.org/10.1002/jemt.20983. es_ES
dc.description.abstract Fruits from many citrus cultivars develop depressed areas in the flavedo (outer part of the peel) and albedo (inner part) following detachment. Although ultrastructural analysis may provide important information about multiple plant responses to stresses and external stimuli at the cell and tissue levels, and despite the proved efficacy of ethylene in reducing peel damage in citrus fruit, cytological responses of this horticultural crop to protective ethylene concentrations have not yet been reported. We show that applying high ethylene levels (2 mu L L(-1) for 14 days) causes sublethal stress as it favored the alteration of cuticle, vacuole, middle lamella and primary wall, especially in the albedo cells, but reduced peel collapse in detached mature "Navelate" oranges (C. sinensis, L. Osbeck) held under nonstressful environmental conditions (22 degrees C and 90-95% RH). Ethylene did not induce relevant changes in lignification but favored the deposition of pectic exudates and the release of sugars from degradation of cell polysaccharides including starch, cellulose, and pectins. In contrast, inhibiting ethylene perception by applying 1-methylcyclopropene (1-MCP) reduced these ethylene-related responses and favored degradation of cell membranes and peel damage. The overall results reflect that mature oranges tolerate high ethylene levels that might favor the activation of defense responses involving oxidative-stress related mechanisms and recycling of nutrients and carbon supply to enable cells to sustain respiration and cope with carbon deprivation stress caused by detachment. Microsc. Res. Tech. 74:970-979, 2011. (C) 2011 Wiley-Liss, Inc. es_ES
dc.description.sponsorship Contract grant sponsor: Comision Interministerial de Ciencia y Tecnologia (CICYT), Spain; Contract grant number: AGL2002-1727; Contract grant number: AGL2009-11969; Contract grant sponsor: Conselleria D'Educacio Generalitat Valenciana, Spain; Contract grant number: PROMETEO/2010/010; Contract grant sponsor: SUPERA Programme, Mexico en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Microscopy Research and Technique es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cell ultrastructure es_ES
dc.subject Cross-protection es_ES
dc.subject Pectin es_ES
dc.subject Peel damage es_ES
dc.subject Polysaccharides es_ES
dc.subject Starch es_ES
dc.subject Electron Microscopy Service of the UPV es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification BIOLOGIA VEGETAL es_ES
dc.title Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jemt.20983
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-11969/ES/Bases Moleculares Y Metabolismo De Fosfolipidos En Alteraciones Fisiologicas Postcosecha De Frutos Citricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F010/ES/Nuevas aproximaciones fisiológicas y biotecnológicas en postcosecha de frutos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICYT//AGL2002-1727/ES/RESISTENCIA A ALTERACIONES FISIOLOGICAS Y PATOLOGICAS DURANTE LAS POSTCOSECHA DE LOS FRUTOS CITRICOS: BASES MOLECULARES Y METABOLISMO DE FENILPROPANOIDES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Cajuste, J.; García Breijo, FJ.; Reig Armiñana, J.; Lafuente, M. (2011). Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit. Microscopy Research and Technique. 74(10):970-979. https://doi.org/10.1002/jemt.20983 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/jemt.20983 es_ES
dc.description.upvformatpinicio 970 es_ES
dc.description.upvformatpfin 979 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 39042 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Agustí, M. (2001). Histological and Physiological Characterization of Rind Breakdown of «Navelate» Sweet Orange. Annals of Botany, 88(3), 415-422. doi:10.1006/anbo.2001.1482 es_ES
dc.description.references Alférez, F., Agusti, M., & Zacarı́as, L. (2003). Postharvest rind staining in Navel oranges is aggravated by changes in storage relative humidity: effect on respiration, ethylene production and water potential. Postharvest Biology and Technology, 28(1), 143-152. doi:10.1016/s0925-5214(02)00120-5 es_ES
dc.description.references Alferez, F., Lluch, Y., & Burns, J. K. (2008). Phospholipase A2 and postharvest peel pitting in citrus fruit. Postharvest Biology and Technology, 49(1), 69-76. doi:10.1016/j.postharvbio.2008.01.010 es_ES
dc.description.references ALFEREZ, F., SINGH, S., UMBACH, A. L., HOCKEMA, B., & BURNS, J. K. (2005). Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H-pyrazole are mediated by lipid signalling. Plant, Cell and Environment, 28(11), 1436-1449. doi:10.1111/j.1365-3040.2005.01381.x es_ES
dc.description.references Alonso, A. P., Vigeolas, H., Raymond, P., Rolin, D., & Dieuaide-Noubhani, M. (2005). A New Substrate Cycle in Plants. Evidence for a High Glucose-Phosphate-to-Glucose Turnover from in Vivo Steady-State and Pulse-Labeling Experiments with [13C]Glucose and [14C]Glucose. Plant Physiology, 138(4), 2220-2232. doi:10.1104/pp.105.062083 es_ES
dc.description.references Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., Alvarez-Manilla, G., Bergmann, C. W., Vargas-Arispuro, I., & Martı́nez-Téllez, M. A. (2002). Effect of Pectic Oligomers on Physiological Responses of Chilling Injury in Discs Excised from Zucchini (Cucurbita pepo L.). Biochemical and Biophysical Research Communications, 290(1), 577-584. doi:10.1006/bbrc.2001.6237 es_ES
dc.description.references Benavente-García, O., Castillo, J., Marin, F. R., Ortuño, A., & Del Río, J. A. (1997). Uses and Properties ofCitrusFlavonoids. Journal of Agricultural and Food Chemistry, 45(12), 4505-4515. doi:10.1021/jf970373s es_ES
dc.description.references Cajuste, J. F., González-Candelas, L., Veyrat, A., García-Breijo, F. J., Reig-Armiñana, J., & Lafuente, M. T. (2010). Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biology and Technology, 55(1), 29-35. doi:10.1016/j.postharvbio.2009.07.005 es_ES
dc.description.references Cajuste, J. F., & Lafuente, M. T. (2007). Ethylene-induced tolerance to non-chilling peel pitting as related to phenolic metabolism and lignin content in ‘Navelate’ fruit. Postharvest Biology and Technology, 45(2), 193-203. doi:10.1016/j.postharvbio.2007.01.019 es_ES
dc.description.references Establés-Ortiz, B., Lafuente, M. T., González-Candelas, L., Forment, J., & Gadea, J. (2009). TRANSCRIPTOMIC ANALYSIS OF ETHYLENE-INDUCED TOLERANCE TO NON-CHILLING PEEL PITTING IN CITRUS FRUIT. Acta Horticulturae, (839), 555-560. doi:10.17660/actahortic.2009.839.76 es_ES
dc.description.references Fiszman, S. M., Salvador, A., & Varela, P. (2005). Methodological developments in bread staling assessment: application to enzyme-supplemented brown pan bread. European Food Research and Technology, 221(5), 616-623. doi:10.1007/s00217-005-0082-2 es_ES
dc.description.references Fujii, H., Shimada, T., Sugiyama, A., Nishikawa, F., Endo, T., Nakano, M., … Omura, M. (2007). Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Science, 173(3), 340-348. doi:10.1016/j.plantsci.2007.06.006 es_ES
dc.description.references Geigenberger, P., Merlo, L., Reimholz, R., & Stitt, M. (1994). When growing potato tubers are detached from their mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP-glucose pyrophosphorylase. Planta, 193(4), 486-493. doi:10.1007/bf02411552 es_ES
dc.description.references Gonzalez-Candelas, L., Alamar, S., Sanchez-Torres, P., Zacarias, L., & Marcos, J. F. (2010). A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biology, 10(1), 194. doi:10.1186/1471-2229-10-194 es_ES
dc.description.references Günthardt-Goerg, M. S., & Vollenweider, P. (2007). Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives. Environmental Pollution, 147(3), 467-488. doi:10.1016/j.envpol.2006.08.033 es_ES
dc.description.references Han, J., Tian, S.-P., Meng, X.-H., & Ding, Z.-S. (2006). Response of physiologic metabolism and cell structures in mango fruit to exogenous methyl salicylate under low-temperature stress. Physiologia Plantarum, 128(1), 125-133. doi:10.1111/j.1399-3054.2006.00731.x es_ES
dc.description.references Hatfield, R., & Vermerris, W. (2001). Lignin Formation in Plants. The Dilemma of Linkage Specificity. Plant Physiology, 126(4), 1351-1357. doi:10.1104/pp.126.4.1351 es_ES
dc.description.references Holland, N., Menezes, H. C., & Lafuente, M. T. (2002). Carbohydrates as related to the heat-induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biology and Technology, 25(2), 181-191. doi:10.1016/s0925-5214(01)00182-x es_ES
dc.description.references Holland, N., Menezes, H. C., & Lafuente, M. T. (2005). Carbohydrate Metabolism As Related to High-Temperature Conditioning and Peel Disorders Occurring during Storage of Citrus Fruit. Journal of Agricultural and Food Chemistry, 53(22), 8790-8796. doi:10.1021/jf051293o es_ES
dc.description.references Karakurt, Y., & Huber, D. J. (2004). Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit. Journal of Plant Physiology, 161(4), 381-388. doi:10.1078/0176-1617-01221 es_ES
dc.description.references Lafuente, M. T., & Sala, J. M. (2002). Abscisic acid levels and the influence of ethylene, humidity and storage temperature on the incidence of postharvest rindstaning of ‘Navelina’ orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology, 25(1), 49-57. doi:10.1016/s0925-5214(01)00162-4 es_ES
dc.description.references Lafuente, M. T., Sala, J. M., & Zacarias, L. (2004). Active Oxygen Detoxifying Enzymes and Phenylalanine Ammonia-lyase in the Ethylene-Induced Chilling Tolerance in Citrus Fruit. Journal of Agricultural and Food Chemistry, 52(11), 3606-3611. doi:10.1021/jf035185i es_ES
dc.description.references Hyun Lee, S., Sook Chae, H., Kyun Lee, T., Hee Kim, S., Ho Shin, S., Huey Cho, B., … Sung Lee, W. (1998). Ethylene-Mediated Phospholipid Catabolic Pathway in Glucose-Starved Carrot Suspension Cells. Plant Physiology, 116(1), 223-229. doi:10.1104/pp.116.1.223 es_ES
dc.description.references Lee, E.-J., Matsumura, Y., Soga, K., Hoson, T., & Koizumi, N. (2007). Glycosyl Hydrolases of Cell Wall are Induced by Sugar Starvation in Arabidopsis. Plant and Cell Physiology, 48(3), 405-413. doi:10.1093/pcp/pcm009 es_ES
dc.description.references Lisker, N., Cohen, L., Chalutz, E., & Fuchs, Y. (1983). Fungal infections suppress ethylene-induced phenylalanine ammonia-lyase activity in grapefruits. Physiological Plant Pathology, 22(3), 331-338. doi:10.1016/s0048-4059(83)81020-0 es_ES
dc.description.references Lliso, I., Tadeo, F. R., Phinney, B. S., Wilkerson, C. G., & Talón, M. (2007). Protein Changes in the Albedo of Citrus Fruits on Postharvesting Storage. Journal of Agricultural and Food Chemistry, 55(22), 9047-9053. doi:10.1021/jf071198a es_ES
dc.description.references Lurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195-208. doi:10.1016/j.postharvbio.2005.04.012 es_ES
dc.description.references Martínez-Téllez, M. A., & Lafuente, M. T. (1997). Effect of high temperature conditioning on ethylene, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase activities in flavedo of chilled ‹Fortune› mandarin fruit. Journal of Plant Physiology, 150(6), 674-678. doi:10.1016/s0176-1617(97)80282-9 es_ES
dc.description.references McCollum, G., & Maul, P. (2007). 1-Methylcyclopropene Inhibits Degreening But Stimulates Respiration and Ethylene Biosynthesis in Grapefruit. HortScience, 42(1), 120-124. doi:10.21273/hortsci.42.1.120 es_ES
dc.description.references Munné-Bosch, S., Peñuelas, J., Asensio, D., & Llusià, J. (2004). Airborne Ethylene May Alter Antioxidant Protection and Reduce Tolerance of Holm Oak to Heat and Drought Stress. Plant Physiology, 136(2), 2937-2947. doi:10.1104/pp.104.050005 es_ES
dc.description.references Porat, R., Weiss, B., Cohen, L., Daus, A., & Aharoni, N. (2004). Reduction of postharvest rind disorders in citrus fruit by modified atmosphere packaging. Postharvest Biology and Technology, 33(1), 35-43. doi:10.1016/j.postharvbio.2004.01.010 es_ES
dc.description.references Purvis, A. C., & Yelenosky, G. (1983). Translocation of Carbohydrates and Proline in Young Grapefruit Trees at Low Temperatures. Plant Physiology, 73(4), 877-880. doi:10.1104/pp.73.4.877 es_ES
dc.description.references Rawyler, A., Pavelic, D., Gianinazzi, C., Oberson, J., & Braendle, R. (1999). Membrane Lipid Integrity Relies on a Threshold of ATP Production Rate in Potato Cell Cultures Submitted to Anoxia. Plant Physiology, 120(1), 293-300. doi:10.1104/pp.120.1.293 es_ES
dc.description.references Reig-Armiñana, J., Calatayud, V., Cerveró, J., Garcı́a-Breijo, F. ., Ibars, A., & Sanz, M. . (2004). Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). Environmental Pollution, 132(2), 321-331. doi:10.1016/j.envpol.2004.04.006 es_ES
dc.description.references Sala, J. M., & Lafuente, M. T. (2004). Antioxidant enzymes activities and rindstaining in ‘Navelina’ oranges as affected by storage relative humidity and ethylene conditioning. Postharvest Biology and Technology, 31(3), 277-285. doi:10.1016/j.postharvbio.2003.10.002 es_ES
dc.description.references Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279-292. doi:10.1016/s0925-5214(98)00091-x es_ES
dc.description.references SMITH, A. M., & STITT, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell & Environment, 30(9), 1126-1149. doi:10.1111/j.1365-3040.2007.01708.x es_ES
dc.description.references Yu, S.-M. (1999). Cellular and Genetic Responses of Plants to Sugar Starvation. Plant Physiology, 121(3), 687-693. doi:10.1104/pp.121.3.687 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem