- -

The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peiró Morell, Ana es_ES
dc.contributor.author Cañizares, María del Carmen es_ES
dc.contributor.author Rubio, Luis es_ES
dc.contributor.author López Del Rincón, Carmelo es_ES
dc.contributor.author Moriones, Enrique es_ES
dc.contributor.author Aramburu, José es_ES
dc.contributor.author Sanchez Navarro, Jesus Angel es_ES
dc.date.accessioned 2016-03-09T15:32:15Z
dc.date.available 2016-03-09T15:32:15Z
dc.date.issued 2014-10
dc.identifier.issn 1464-6722
dc.identifier.uri http://hdl.handle.net/10251/61622
dc.description This is the accepted version of the following article: Peiró Morell, A.; Cañizares, MC.; Rubio, L.; López Del Rincón, C.; Moriones, E.; Aramburu, J.; Sanchez Navarro, JA. (2014). The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance. Molecular Plant Pathology. 15:802-813. doi:10.1111/mpp.12142., which has been published in final form at http://dx.doi.org/10.1111/mpp.12142 . es_ES
dc.description.abstract The avirulence determinant triggering the resistance conferred by the tomato gene Sw-5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance-breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non-resistance-breaking (NRB)] in Nicotiana benthamiana expressing Sw-5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell-to-cell and systemic transport of the chimeric AMV RNAs into N.tabacum with or without Sw-5, except for the constructs with NBR when Sw-5 was expressed, although RB2 showed reduced cell-to-cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co-inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw-5. These results indicate that NSm is the avirulence determinant for Sw-5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system. es_ES
dc.description.sponsorship A.P. was a recipient of a JAE-Pre contract from the Consejo Superior de Investigaciones Cientificas (CSIC), and M. C. C was a recipient of an I3P contract from CSIC (co-financed by Fondo Social Europeo, FSE). We thank L. Corachan for excellent technical assistance and Dr Marcel Prins for providing the Nt/Sw5-b and Nb/Sw5-b seeds. This work was supported by grant BIO2011-25018 from the Spanish granting agency DGICYT, grant PAID05-11/2888 from the Universidad Politecnica de Valencia and by grant RTA2008-00010-C03 from the Instituto Nacional de Investigaciones Agrarias (INIA). All authors have no conflicts of interest to declare. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Molecular Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Avr es_ES
dc.subject Competition assays es_ES
dc.subject Movement protein NSm es_ES
dc.subject Tospovirus es_ES
dc.subject Transient expression es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.title The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/mpp.12142
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2011-25018/ES/TRAFICO INTRACELULAR, INTERCELULAR Y VASCULAR DE RNAS Y PROTEINAS VIRALES Y SUBVIRALES EN PLANTAS¿/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-01/ES/Diversidad genética y factores evolutivos y epidemiológicos implicados en los aislados españoles de TSWV que superan las resistencias genéticas Sw-5 de tomate y Tsw de pimiento/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11-2888/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-02/ES/Caracterización de aislados del virus del bronceado (TSWV) que sobrepasan la resistencia del gen Tsw en pimiento. Puesta a punto de la utilización de RNA de interferencia como método de control/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2008-00010-C03-03/ES/Estudio de los determinantes genéticos de TSWV implicados en la superación de las resistencias de tomate y pimiento. Desarrollo de nuevas variedades resistentes/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Peiró Morell, A.; Cañizares, MDC.; Rubio, L.; López Del Rincón, C.; Moriones, E.; Aramburu, J.; Sanchez Navarro, JA. (2014). The moment protein (NSm) of Tomato spotted wilt virus is the avirulence determinant in the Sw-5 gene-based resistance. Molecular Plant Pathology. 15(8):802-813. https://doi.org/10.1111/mpp.12142 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/mpp.12142 es_ES
dc.description.upvformatpinicio 802 es_ES
dc.description.upvformatpfin 813 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 277784 es_ES
dc.identifier.eissn 1364-3703
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Agudelo-Romero, P., de la Iglesia, F., & Elena, S. F. (2008). The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infection, Genetics and Evolution, 8(6), 806-814. doi:10.1016/j.meegid.2008.07.010 es_ES
dc.description.references Aramburu, J., & Marti, M. (2003). The occurrence in north-east Spain of a variant of Tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. Plant Pathology, 52(3), 407-407. doi:10.1046/j.1365-3059.2003.00829.x es_ES
dc.description.references Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A., & Moury, B. (2006). Different Mutations in the Genome-Linked Protein VPg of Potato virus Y Confer Virulence on the pvr23 Resistance in Pepper. Molecular Plant-Microbe Interactions, 19(5), 557-563. doi:10.1094/mpmi-19-0557 es_ES
dc.description.references Bergelson, J., Dwyer, G., & Emerson, J. J. (2001). Models and Data on Plant-Enemy Coevolution. Annual Review of Genetics, 35(1), 469-499. doi:10.1146/annurev.genet.35.102401.090954 es_ES
dc.description.references Boiteux, L. S. (1995). Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics, 90(1), 146-149. doi:10.1007/bf00221009 es_ES
dc.description.references Boiteux, L. S., & de B. Giordano, L. (1993). Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica, 71(1-2), 151-154. doi:10.1007/bf00023478 es_ES
dc.description.references Burdon, J. J., & Thrall, P. H. (2003). Genome Biology, 4(9), 227. doi:10.1186/gb-2003-4-9-227 es_ES
dc.description.references Calder, V. L., & Palukaitis, P. (1992). Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. Journal of General Virology, 73(1), 165-168. doi:10.1099/0022-1317-73-1-165 es_ES
dc.description.references Canady, M. A., Stevens, M. R., Barineau, M. S., & Scott, J. W. (2001). Euphytica, 117(1), 19-25. doi:10.1023/a:1004089504051 es_ES
dc.description.references Chain, F., Riault, G., Trottet, M., & Jacquot, E. (2006). Evaluation of the durability of the Barley yellow dwarf virus-resistant Zhong ZH and TC14 wheat lines. European Journal of Plant Pathology, 117(1), 35-43. doi:10.1007/s10658-006-9066-8 es_ES
dc.description.references Ciuffo, M., Finetti-Sialer, M. M., Gallitelli, D., & Turina, M. (2005). First report in Italy of a resistance-breaking strain of Tomato spotted wilt virus infecting tomato cultivars carrying the Sw5 resistance gene. Plant Pathology, 54(4), 564-564. doi:10.1111/j.1365-3059.2005.01203.x es_ES
dc.description.references Culver, J. N., Stubbs, G., & Dawson, W. O. (1994). Structure-function Relationship Between Tobacco Mosaic Virus Coat Protein and Hypersensitivity in Nicotiana sylvestris. Journal of Molecular Biology, 242(2), 130-138. doi:10.1006/jmbi.1994.1564 es_ES
dc.description.references Dawson, W. O. (1988). Modifications of the Tobacco Mosaic Virus Coat Protein Gene Affecting Replication, Movement, and Symptomatology. Phytopathology, 78(6), 783. doi:10.1094/phyto-78-783 es_ES
dc.description.references Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478 es_ES
dc.description.references Fajardo, T. V. M., Peiro, A., Pallas, V., & Sanchez-Navarro, J. (2012). Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family. Journal of General Virology, 94(Pt_3), 677-681. doi:10.1099/vir.0.048793-0 es_ES
dc.description.references Feng, Z., Chen, X., Bao, Y., Dong, J., Zhang, Z., & Tao, X. (2013). Nucleocapsid ofTomato spotted wilt tospovirusforms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytologist, 200(4), 1212-1224. doi:10.1111/nph.12447 es_ES
dc.description.references Flor, H. H. (1971). Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology, 9(1), 275-296. doi:10.1146/annurev.py.09.090171.001423 es_ES
dc.description.references Fraile, A., & García-Arenal, F. (2010). The Coevolution of Plants and Viruses. Advances in Virus Research, 1-32. doi:10.1016/s0065-3527(10)76001-2 es_ES
dc.description.references Fraile, A., Pagan, I., Anastasio, G., Saez, E., & Garcia-Arenal, F. (2010). Rapid Genetic Diversification and High Fitness Penalties Associated with Pathogenicity Evolution in a Plant Virus. Molecular Biology and Evolution, 28(4), 1425-1437. doi:10.1093/molbev/msq327 es_ES
dc.description.references Fraser, R. S. S. (1990). The Genetics of Resistance to Plant Viruses. Annual Review of Phytopathology, 28(1), 179-200. doi:10.1146/annurev.py.28.090190.001143 es_ES
dc.description.references Gordillo, L. F., Stevens, M. R., Millard, M. A., & Geary, B. (2008). ScreeningTwo Lycopersicon peruvianumCollections for Resistance toTomato spotted wilt virus. Plant Disease, 92(5), 694-704. doi:10.1094/pdis-92-5-0694 es_ES
dc.description.references Goulden, M. G., Köhm, B. A., Cruz, S. S., Kavanagh, T. A., & Baulcombe, D. C. (1993). A Feature of the Coat Protein of Potato Virus X Affects Both Induced Virus Resistance in Potato and Viral Fitness. Virology, 197(1), 293-302. doi:10.1006/viro.1993.1590 es_ES
dc.description.references De Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA Segment of Tomato Spotted Wilt Virus has an Ambisense Character. Journal of General Virology, 71(5), 1001-1007. doi:10.1099/0022-1317-71-5-1001 es_ES
dc.description.references De Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72(9), 2207-2216. doi:10.1099/0022-1317-72-9-2207 es_ES
dc.description.references HANADA, K., & HARRISON, B. D. (1977). Effects of virus genotype and temperature on seed transmission of nepoviruses. Annals of Applied Biology, 85(1), 79-92. doi:10.1111/j.1744-7348.1977.tb00632.x es_ES
dc.description.references Carmen Herranz, M., Sanchez-Navarro, J.-A., Saurí, A., Mingarro, I., & Pallás, V. (2005). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology, 339(1), 31-41. doi:10.1016/j.virol.2005.05.020 es_ES
dc.description.references Hoffmann, K., Qiu, W. P., & Moyer, J. W. (2001). Overcoming Host- and Pathogen-Mediated Resistance in Tomato and Tobacco Maps to the M RNA ofTomato spotted wilt virus. Molecular Plant-Microbe Interactions, 14(2), 242-249. doi:10.1094/mpmi.2001.14.2.242 es_ES
dc.description.references Jenner, C. E., Wang, X., Ponz, F., & Walsh, J. A. (2002). A fitness cost for Turnip mosaic virus to overcome host resistance. Virus Research, 86(1-2), 1-6. doi:10.1016/s0168-1702(02)00031-x es_ES
dc.description.references Lanfermeijer, F. C., Dijkhuis, J., Sturre, M. J. G., de Haan, P., & Hille, J. (2003). Plant Molecular Biology, 52(5), 1039-1051. doi:10.1023/a:1025434519282 es_ES
dc.description.references LATHAM, L. J., & JONES, R. A. C. (1998). Selection of resistance breaking strains of tomato spotted wilt tospovirus. Annals of Applied Biology, 133(3), 385-402. doi:10.1111/j.1744-7348.1998.tb05838.x es_ES
dc.description.references Lewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342(1), 26-37. doi:10.1016/j.virol.2005.06.050 es_ES
dc.description.references Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390(1), 110-121. doi:10.1016/j.virol.2009.04.027 es_ES
dc.description.references Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F., & Rubio, L. (2010). Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. Journal of General Virology, 92(1), 210-215. doi:10.1099/vir.0.026708-0 es_ES
dc.description.references Margaria, P., Ciuffo, M., Pacifico, D., & Turina, M. (2007). Evidence That the Nonstructural Protein of Tomato spotted wilt virus Is the Avirulence Determinant in the Interaction with Resistant Pepper Carrying the Tsw Gene. Molecular Plant-Microbe Interactions, 20(5), 547-558. doi:10.1094/mpmi-20-5-0547 es_ES
dc.description.references Martinez-Gil, L., Sanchez-Navarro, J. A., Cruz, A., Pallas, V., Perez-Gil, J., & Mingarro, I. (2009). Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 83(11), 5535-5543. doi:10.1128/jvi.00393-09 es_ES
dc.description.references Más, P., & Pallás, V. (1995). Non-isotopic tissue-printing hybridization: a new technique to study long-distance plant virus movement. Journal of Virological Methods, 52(3), 317-326. doi:10.1016/0166-0934(94)00167-f es_ES
dc.description.references Melcher, U. (2000). The ‘30K’ superfamily of viral movement proteins. Journal of General Virology, 81(1), 257-266. doi:10.1099/0022-1317-81-1-257 es_ES
dc.description.references Meshi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N., & Okada, Y. (1988). Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. The EMBO Journal, 7(6), 1575-1581. doi:10.1002/j.1460-2075.1988.tb02982.x es_ES
dc.description.references Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H., & Okada, Y. (1989). Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. The Plant Cell, 1(5), 515-522. doi:10.1105/tpc.1.5.515 es_ES
dc.description.references Mestre, P., Brigneti, G., Durrant, M. C., & Baulcombe, D. C. (2003). Potato virus Y NIa protease activity is not sufficient for elicitation ofRy-mediated disease resistance in potato. The Plant Journal, 36(6), 755-761. doi:10.1046/j.1365-313x.2003.01917.x es_ES
dc.description.references Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. The Plant Journal, 20(3), 317-332. doi:10.1046/j.1365-313x.1999.t01-1-00606.x es_ES
dc.description.references Milne, R. G., & Francki, R. I. B. (1984). Should Tomato Spotted Wilt Virus Be Considered as a Possible Member of the Family Bunyaviridae? Intervirology, 22(2), 72-76. doi:10.1159/000149536 es_ES
dc.description.references Moury, B., Selassie, K. G., Marchoux, G., Daubèze, A.-M., & Palloix, A. (1998). European Journal of Plant Pathology, 104(5), 489-498. doi:10.1023/a:1008618022144 es_ES
dc.description.references MURANT, A. F., TAYLOR, C. E., & CHAMBERS, J. (1968). Properties, relationships and transmission of a strain of raspberry ringspot virus infecting raspberry cultivars immune to the common Scottish strain*. Annals of Applied Biology, 61(2), 175-186. doi:10.1111/j.1744-7348.1968.tb04523.x es_ES
dc.description.references Neeleman, L., & Bol, J. F. (1999). Cis-Acting Functions of Alfalfa Mosaic Virus Proteins Involved in Replication and Encapsidation of Viral RNA. Virology, 254(2), 324-333. doi:10.1006/viro.1998.9568 es_ES
dc.description.references Padgett, H. S., & Beachy, R. N. (1993). Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. The Plant Cell, 5(5), 577-586. doi:10.1105/tpc.5.5.577 es_ES
dc.description.references De Ronde, D., Butterbach, P., Lohuis, D., Hedil, M., van Lent, J. W. M., & Kormelink, R. (2013). Tswgene-based resistance is triggered by a functional RNA silencing suppressor protein of theTomato spotted wilt virus. Molecular Plant Pathology, 14(4), 405-415. doi:10.1111/mpp.12016 es_ES
dc.description.references SACRISTÁN, S., & GARCÍA‐ARENAL, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369-384. doi:10.1111/j.1364-3703.2007.00460.x es_ES
dc.description.references Saito, T., Meshi, T., Takamatsu, N., & Okada, Y. (1987). Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proceedings of the National Academy of Sciences, 84(17), 6074-6077. doi:10.1073/pnas.84.17.6074 es_ES
dc.description.references Sánchez-Navarro, J. A., & Bol, J. F. (2001). Role of theAlfalfa mosaic virusMovement Protein and Coat Protein in Virus Transport. Molecular Plant-Microbe Interactions, 14(9), 1051-1062. doi:10.1094/mpmi.2001.14.9.1051 es_ES
dc.description.references S√°nchez-Navarro, J. A., Bol, J. F., Reusken, C. B., & Pall√°s, V. (1997). Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus. Journal of General Virology, 78(12), 3171-3176. doi:10.1099/0022-1317-78-12-3171 es_ES
dc.description.references Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125 es_ES
dc.description.references Sánchez-Navarro, J. A., Carmen Herranz, M., & Pallás, V. (2006). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology, 346(1), 66-73. doi:10.1016/j.virol.2005.10.024 es_ES
dc.description.references Sanchez-Navarro, J., Fajardo, T., Zicca, S., Pallas, V., & Stavolone, L. (2010). Caulimoviridae Tubule-Guided Transport Is Dictated by Movement Protein Properties. Journal of Virology, 84(8), 4109-4112. doi:10.1128/jvi.02543-09 es_ES
dc.description.references Sanjuan, R., Moya, A., & Elena, S. F. (2004). The contribution of epistasis to the architecture of fitness in an RNA virus. Proceedings of the National Academy of Sciences, 101(43), 15376-15379. doi:10.1073/pnas.0404125101 es_ES
dc.description.references Sanjuán, R., Cuevas, J. M., Moya, A., & Elena, S. F. (2005). Epistasis and the Adaptability of an RNA Virus. Genetics, 170(3), 1001-1008. doi:10.1534/genetics.105.040741 es_ES
dc.description.references Sasaki, A. (2000). Host-parasite coevolution in a multilocus gene-for-gene system. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1458), 2183-2188. doi:10.1098/rspb.2000.1267 es_ES
dc.description.references Segarra, J. (2005). Stable Polymorphisms in a Two-Locus Gene-for-Gene System. Phytopathology, 95(7), 728-736. doi:10.1094/phyto-95-0728 es_ES
dc.description.references Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences, 102(14), 5168-5173. doi:10.1073/pnas.0407354102 es_ES
dc.description.references Sorho, F., Pinel, A., Traoré, O., Bersoult, A., Ghesquière, A., Hébrard, E., … Fargette, D. (2005). Durability of natural and transgenic resistances in rice to Rice yellow mottle virus. European Journal of Plant Pathology, 112(4), 349-359. doi:10.1007/s10658-005-6607-5 es_ES
dc.description.references Spassova, M. I., Prins, T. W., Folkertsma, R. T., Klein-Lankhorst, R. M., Hille, J., Goldbach, R. W., & Prins, M. (2001). Molecular Breeding, 7(2), 151-161. doi:10.1023/a:1011363119763 es_ES
dc.description.references Staskawicz, B., Ausubel, F., Baker, B., Ellis, J., & Jones, J. (1995). Molecular genetics of plant disease resistance. Science, 268(5211), 661-667. doi:10.1126/science.7732374 es_ES
dc.description.references STORMS, M. M. H., KORMELINK, R., PETERS, D., VAN LENT, J. W. M., & GOLDBACH, R. W. (1995). The Nonstructural NSm Protein of Tomato Spotted Wilt Virus Induces Tubular Structures in Plant and Insect Cells. Virology, 214(2), 485-493. doi:10.1006/viro.1995.0059 es_ES
dc.description.references Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., … Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters, 532(1-2), 75-79. doi:10.1016/s0014-5793(02)03632-3 es_ES
dc.description.references Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-d es_ES
dc.description.references Van der Vossen, E. A. G., Neeleman, L., & Bol, J. F. (1993). Role of the 5′ leader sequence of alfalfa mosaic virus RNA 3 in replication and translation of the viral RNA. Nucleic Acids Research, 21(6), 1361-1367. doi:10.1093/nar/21.6.1361 es_ES
dc.description.references Zaccardelli, M., Perrone, D., Del Galdo, A., Campanile, F., Parrella, G., & Giordano, I. (2008). TOMATO GENOTYPES RESISTANT TO TOMATO SPOTTED WILT VIRUS EVALUATED IN OPEN FIELD CROPS IN SOUTHERN ITALY. Acta Horticulturae, (789), 147-150. doi:10.17660/actahortic.2008.789.20 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem