Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.contributor.author | Villafuerte, L. | es_ES |
dc.date.accessioned | 2016-03-23T15:17:27Z | |
dc.date.available | 2016-03-23T15:17:27Z | |
dc.date.issued | 2011-01 | |
dc.identifier.issn | 0170-4214 | |
dc.identifier.uri | http://hdl.handle.net/10251/62034 | |
dc.description.abstract | This paper deals with the construction of numerical methods of random initial value problems. Random linear multistep methods are presented and sufficient conditions for their mean square convergence are established. Main statistical properties of the approximations processes are computed in several illustrative examples. Copyright © 2010 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | Thanks to the anonymous reviewer whose comments greatly enhanced the paper. This work has been partially supported by the Spanish M.E.C. and FEDER grants MTM2009-08587 and TRA2007-68006-C02-02, the Universidad Politecnica de Valencia grant PAID-06-09 (ref. 2588) and Mexican Conacyt. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mean square calculus | es_ES |
dc.subject | Random initial value problem | es_ES |
dc.subject | Random linear multistep scheme | es_ES |
dc.subject | Illustrative examples | es_ES |
dc.subject | Initial values | es_ES |
dc.subject | Linear multi steps | es_ES |
dc.subject | Linear multistep method | es_ES |
dc.subject | Mean square | es_ES |
dc.subject | Multi step methods | es_ES |
dc.subject | Numerical solution | es_ES |
dc.subject | Statistical properties | es_ES |
dc.subject | Sufficient conditions | es_ES |
dc.subject | Calculations | es_ES |
dc.subject | Differential equations | es_ES |
dc.subject | Differentiation (calculus) | es_ES |
dc.subject | Initial value problems | es_ES |
dc.subject | Numerical methods | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Numerical solution of random differential initial value problems: Multistep methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.1331 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-08587/ES/Ecuaciones Diferenciales Aleatorias Y Aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-09-2588/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TRA2007-68006-C02-02/ES/DESARROLLO Y VALIDACION DE NUEVOS MODELOS 1D DE CAVITACION, MODELADO DEL CHORRO Y SUS INTERACCIONES/ / | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés, J.; Jódar Sánchez, LA.; Villafuerte, L. (2011). Numerical solution of random differential initial value problems: Multistep methods. Mathematical Methods in the Applied Sciences. 34(1):63-75. https://doi.org/10.1002/mma.1331 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/mma.1331 | es_ES |
dc.description.upvformatpinicio | 63 | es_ES |
dc.description.upvformatpfin | 75 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 39467 | es_ES |
dc.identifier.eissn | 1099-1476 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Chils, J.-P., & Delfiner, P. (Eds.). (1999). Geostatistics. Wiley Series in Probability and Statistics. doi:10.1002/9780470316993 | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008 | es_ES |
dc.description.references | Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Mean square numerical solution of random differential equations: Facts and possibilities. Computers & Mathematics with Applications, 53(7), 1098-1106. doi:10.1016/j.camwa.2006.05.030 | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Numerical solution of random differential equations: A mean square approach. Mathematical and Computer Modelling, 45(7-8), 757-765. doi:10.1016/j.mcm.2006.07.017 | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., Villafuerte, L., & Villanueva, R. J. (2007). Computing mean square approximations of random diffusion models with source term. Mathematics and Computers in Simulation, 76(1-3), 44-48. doi:10.1016/j.matcom.2007.01.020 | es_ES |
dc.description.references | Brugnano, L., Burrage, K., & Burrage, P. M. (2000). Bit Numerical Mathematics, 40(3), 451-470. doi:10.1023/a:1022363612387 | es_ES |
dc.description.references | Denk, G., & Schäffler, S. (1997). Adams methods for the efficient solution of stochastic differential equations with additive noise. Computing, 59(2), 153-161. doi:10.1007/bf02684477 | es_ES |
dc.description.references | Ewald, B. D., & Témam, R. (2005). Numerical Analysis of Stochastic Schemes in Geophysics. SIAM Journal on Numerical Analysis, 42(6), 2257-2276. doi:10.1137/s0036142902418333 | es_ES |
dc.description.references | Talay, D., & Tubaro, L. (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Analysis and Applications, 8(4), 483-509. doi:10.1080/07362999008809220 | es_ES |
dc.description.references | Schurz, H. (1999). The Invariance of Asymptotic Laws of Linear Stochastic Systems under Discretization. ZAMM, 79(6), 375-382. doi:10.1002/(sici)1521-4001(199906)79:6<375::aid-zamm375>3.0.co;2-7 | es_ES |