Mostrar el registro sencillo del ítem
dc.contributor.author | Saadeddin Saadeddin, Anas | es_ES |
dc.contributor.author | Rodrigo Navarro, Aleixandre | es_ES |
dc.contributor.author | Monedero, Vicente | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Moratal Pérez, David | es_ES |
dc.contributor.author | González-Martín, María Luisa | es_ES |
dc.contributor.author | Navarro, David | es_ES |
dc.contributor.author | García, Andrés J. | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.date.accessioned | 2016-04-05T10:36:33Z | |
dc.date.available | 2016-04-05T10:36:33Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 2192-2640 | |
dc.identifier.uri | http://hdl.handle.net/10251/62230 | |
dc.description.abstract | Lactococcus lactis is modified to express a fibronectin fragment (FNIII₇₋₁₀) as a membrane protein. This interphase, based on a living system, can be further exploited to provide spatio-temporal factors to direct cell function at the material interface. This approach establishes a new paradigm in biomaterial surface functionalization for biomedical applications. | es_ES |
dc.description.sponsorship | This work was supported by MAT2012-38359-C03-01, MAT2010-10497-E and MAT2009-14695-C04-01. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Advanced Healthcare Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bacteria | es_ES |
dc.subject | Cell adhesion | es_ES |
dc.subject | Fibronectin | es_ES |
dc.subject | Integrin | es_ES |
dc.subject | Interface | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Functional Living Biointerphases | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/adhm.201200473 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38359-C03-01/ES/Materiales que inducen la fibrilogénesis de la fibronectina para producir microambientes sinérgicos en los factores de crecimiento/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-10497-E/ES/XII CONGRESO NACIONAL DE PROPIEDADES MECANICAS DE SOLIDOS E INTERNATIONAL SYMPOSIUM "ADVANCES ON RECRYSTALLIZATION AND PROCESSING OF FINE GRAINED MATERIALS"/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14695-C04-01/ES/Nuevas Modificaciones Superficiales De Aleaciones Metalicas Convencionales. Caracterizacion Superficial Y Adhesion Microbiana/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Saadeddin Saadeddin, A.; Rodrigo Navarro, A.; Monedero, V.; Rico Tortosa, PM.; Moratal Pérez, D.; González-Martín, ML.; Navarro, D.... (2013). Functional Living Biointerphases. Advanced Healthcare Materials. 2(9):1213-1218. https://doi.org/10.1002/adhm.201200473 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/adhm.201200473 | es_ES |
dc.description.upvformatpinicio | 1213 | es_ES |
dc.description.upvformatpfin | 1218 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 254590 | es_ES |
dc.identifier.eissn | 2192-2659 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x | es_ES |
dc.description.references | Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 | es_ES |
dc.description.references | Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 | es_ES |
dc.description.references | Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 | es_ES |
dc.description.references | García, A. J. (2005). Get a grip: integrins in cell–biomaterial interactions. Biomaterials, 26(36), 7525-7529. doi:10.1016/j.biomaterials.2005.05.029 | es_ES |
dc.description.references | Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 6(1), 56-68. doi:10.1038/nrm1549 | es_ES |
dc.description.references | Lutolf, M. P., Gilbert, P. M., & Blau, H. M. (2009). Designing materials to direct stem-cell fate. Nature, 462(7272), 433-441. doi:10.1038/nature08602 | es_ES |
dc.description.references | Petrie, T. A., Raynor, J. E., Dumbauld, D. W., Lee, T. T., Jagtap, S., Templeman, K. L., … Garcia, A. J. (2010). Multivalent Integrin-Specific Ligands Enhance Tissue Healing and Biomaterial Integration. Science Translational Medicine, 2(45), 45ra60-45ra60. doi:10.1126/scitranslmed.3001002 | es_ES |
dc.description.references | Makarenkova, H. P., Hoffman, M. P., Beenken, A., Eliseenkova, A. V., Meech, R., Tsau, C., … Mohammadi, M. (2009). Differential Interactions of FGFs with Heparan Sulfate Control Gradient Formation and Branching Morphogenesis. Science Signaling, 2(88), ra55-ra55. doi:10.1126/scisignal.2000304 | es_ES |
dc.description.references | Silva, A. K. A., Richard, C., Bessodes, M., Scherman, D., & Merten, O.-W. (2009). Growth Factor Delivery Approaches in Hydrogels. Biomacromolecules, 10(1), 9-18. doi:10.1021/bm801103c | es_ES |
dc.description.references | Lutolf, M. P., & Hubbell, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 23(1), 47-55. doi:10.1038/nbt1055 | es_ES |
dc.description.references | Hahn, M. S., Miller, J. S., & West, J. L. (2006). Three-Dimensional Biochemical and Biomechanical Patterning of Hydrogels for Guiding Cell Behavior. Advanced Materials, 18(20), 2679-2684. doi:10.1002/adma.200600647 | es_ES |
dc.description.references | Moon, J. J., Hahn, M. S., Kim, I., Nsiah, B. A., & West, J. L. (2009). Micropatterning of Poly(Ethylene Glycol) Diacrylate Hydrogels with Biomolecules to Regulate and Guide Endothelial Morphogenesis. Tissue Engineering Part A, 15(3), 579-585. doi:10.1089/ten.tea.2008.0196 | es_ES |
dc.description.references | Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R., & García, A. J. (2009). Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences, 107(8), 3323-3328. doi:10.1073/pnas.0905447107 | es_ES |
dc.description.references | Patterson, J., Martino, M. M., & Hubbell, J. A. (2010). Biomimetic materials in tissue engineering. Materials Today, 13(1-2), 14-22. doi:10.1016/s1369-7021(10)70013-4 | es_ES |
dc.description.references | Bermúdez-Humarán, L. G., Cortes-Perez, N. G., L’Haridon, R., & Langella, P. (2008). Production of biological active murine IFN-γ by recombinant Lactococcus lactis. FEMS Microbiology Letters, 280(2), 144-149. doi:10.1111/j.1574-6968.2007.01038.x | es_ES |
dc.description.references | Cortes-Perez, N. G., Medina, L. F. da C., Lefèvre, F., Langella, P., & Bermúdez-Humarán, L. G. (2008). Production of biologically active CXC chemokines by Lactococcus lactis: Evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine, 26(46), 5778-5783. doi:10.1016/j.vaccine.2008.08.044 | es_ES |
dc.description.references | Rawsthorne, H., Turner, K. N., & Mills, D. A. (2006). Multicopy Integration of Heterologous Genes, Using the Lactococcal Group II Intron Targeted to Bacterial Insertion Sequences. Applied and Environmental Microbiology, 72(9), 6088-6093. doi:10.1128/aem.02992-05 | es_ES |
dc.description.references | Villatoro-Hernandez, J., Loera-Arias, M. J., Gamez-Escobedo, A., Franco-Molina, M., Gomez-Gutierrez, J. G., Rodriguez-Rocha, H., … Montes-de-Oca-Luna, R. (2008). Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis. Microbial Cell Factories, 7(1), 22. doi:10.1186/1475-2859-7-22 | es_ES |
dc.description.references | Llopis-Hernández, V., Rico, P., Ballester-Beltrán, J., Moratal, D., & Salmerón-Sánchez, M. (2011). Role of Surface Chemistry in Protein Remodeling at the Cell-Material Interface. PLoS ONE, 6(5), e19610. doi:10.1371/journal.pone.0019610 | es_ES |
dc.description.references | llić, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., … Aizawa, S. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377(6549), 539-544. doi:10.1038/377539a0 | es_ES |
dc.description.references | Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. The Journal of Cell Biology, 134(3), 793-799. doi:10.1083/jcb.134.3.793 | es_ES |
dc.description.references | Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14(3), 1680-1688. doi:10.1128/mcb.14.3.1680 | es_ES |
dc.description.references | Reiske, H. R., Kao, S.-C., Cary, L. A., Guan, J.-L., Lai, J.-F., & Chen, H.-C. (1999). Requirement of Phosphatidylinositol 3-Kinase in Focal Adhesion Kinase-promoted Cell Migration. Journal of Biological Chemistry, 274(18), 12361-12366. doi:10.1074/jbc.274.18.12361 | es_ES |
dc.description.references | Petrie, T. A., Capadona, J. R., Reyes, C. D., & García, A. J. (2006). Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials, 27(31), 5459-5470. doi:10.1016/j.biomaterials.2006.06.027 | es_ES |
dc.description.references | Schotte, L., Steidler, L., Vandekerckhove, J., & Remaut, E. (2000). Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme and Microbial Technology, 27(10), 761-765. doi:10.1016/s0141-0229(00)00297-0 | es_ES |