- -

Influence of amyloglucosidase in bread crust properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of amyloglucosidase in bread crust properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Altamirano Fortoul, Rossana del Carmen es_ES
dc.contributor.author Hernando Hernando, Mª Isabel es_ES
dc.contributor.author Molina Rosell, Maria Cristina es_ES
dc.date.accessioned 2016-04-08T10:10:35Z
dc.date.available 2016-04-08T10:10:35Z
dc.date.issued 2014-04
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/62364
dc.description.abstract Enzymes are used in baking as a useful tool for improving the processing behavior or properties of baked products. A number of enzymes have been proposed for improving specific volume, imparting softness, or extend the shelf life of breads, but scarce studies have been focused on bread crust. The aim of this study was to determine the use of amyloglucosidase for modulating the properties of the bread crust and increase its crispness. Increasing levels of enzyme were applied onto the surface of two different partially bake breads (thin and thick crust bread). Amyloglucosidase treatment affected significantly (P<0.05) the color of the crust and decreased the moisture content and water activity of the crusts. Mechanical properties were modified by amyloglucosidase, namely increasing levels of enzyme promoted a decrease in the force (Fm) required for crust rupture and an increase in the number of fracture events (Nwr) related to crispy products. Crust microstructure analysis confirmed that enzymatic treatment caused changes in the bread crust structure, leading to a disruption of the structure, by removing the starchy layer that covered the granules and increasing the number of voids, which agree with the texture fragility. es_ES
dc.description.sponsorship Authors acknowledge the financial support of Spanish Ministry of Economy and Sustainability (Project AGL2011-23802), the European Regional Development Fund (FEDER), Generalitat Valenciana (Project Prometeo 2012/064) and the Consejo Superior de Investigaciones Cientificas (CSIC). R. Altamirano-Fortoul would like to thank her grant to CSIC. The authors also thank Forns Valencians S. A. (Spain) for supplying commercial frozen partially baked breads. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bread crust es_ES
dc.subject amyloglucosidase color properties es_ES
dc.subject Color properties es_ES
dc.subject Water activity es_ES
dc.subject Puncturing es_ES
dc.subject Microstructure es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Influence of amyloglucosidase in bread crust properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-013-1084-x
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-23802/ES/HACIA ALIMENTOS HORNEADOS LIBRES DE GLUTEN MAS SALUDABLES. EFECTO COMBINADO DE TRATAMIENTOS ENZIMATICOS Y FISICOS SOBRE MATRICES HIDROCARBONADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F064/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Altamirano Fortoul, RDC.; Hernando Hernando, MI.; Molina Rosell, MC. (2014). Influence of amyloglucosidase in bread crust properties. Food and Bioprocess Technology. 7(4):1037-1046. https://doi.org/10.1007/s11947-013-1084-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-013-1084-x es_ES
dc.description.upvformatpinicio 1037 es_ES
dc.description.upvformatpfin 1046 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 277656 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Altamirano-Fortoul R, Hernando I & Rosell CM (2013) Texture of bread crust: puncturing settings effect and its relationship to microstructure. Journal of Texture Studies. doi: 10.1111/j.1745-4603.2012.00368.x . es_ES
dc.description.references Altamirano-Fortoul, R., Le Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amount of steam during baking on bread crust features and water diffusion. Journal of Food Engineering, 108, 128–134. es_ES
dc.description.references Altamirano-Fortoul R & Rosell CM (2010) Alternatives for extending crispiness of crusty breads. In Proceedings of International Conference on Food Innovation, FoodInnova, 25–29 October 2010, Valencia, Spain. ISBN978-84-693-5011-.9. es_ES
dc.description.references Arimi, J. M., Duggan, E., O’sullivan, M., Lyng, J. G., & O’riordan, E. D. (2010). Effect of water activity on the crispiness of a biscuit (crackerbread): mechanical and acoustic evaluation. Food Research International, 43, 1650–1655. es_ES
dc.description.references Castro-Prada, E. M., Primo-Martin, C., Meinders, M. B. J., Hamer, R. J., & Van Vliet, T. (2009). Relationship between water activity, deformation speed, and crispness characterization. Journal of Texture Studies, 40, 127–156. es_ES
dc.description.references Esveld, D. C., Van Der Sman, R. G. M., Van Dalen, G., Van Duynhoven, J. P. M., & Meinders, M. B. J. (2012). Effect of morphology on water sorption in cellular solid foods. Part I: Pore Scale Network Model. Journal of Food Engineering, 109, 301–310. es_ES
dc.description.references Goedeken, D. L., & Tong, C. H. (1993). Permeability measurements of porous food materials. Journal of Food Science, 58, 1329–1331. es_ES
dc.description.references Gondek, E., Lewicki, P. P., & Ranachowski, Z. (2006). Influence of water activity on the acoustic properties of breakfast cereals. Journal of Texture Studies, 37, 497–515. es_ES
dc.description.references Guerrieri, N., Eynard, L., Lavelli, V., & Cerletti, P. (1997). Interactions of protein and starch studied through amyloglucosidase action. Cereal Chemistry, 74, 846–850. es_ES
dc.description.references ICC. (1994). Standard methods of the International Association for Cereal Science and Technology. Vienna: Austria. es_ES
dc.description.references Heenan, S. P., Dufour, J. P., Hamid, N., Harvey, W., & Delahunty, C. M. (2008). The sensory quality of fresh bread: descriptive attributes and consumer perceptions. Food Research International, 41, 989–997. es_ES
dc.description.references Heiniö, R. L., Nordlund, E., Poutanen, K., & Buchert, J. (2012). Use of enzymes to elucidate the factors contributing to bitterness in rye flavor. Food Research International, 45, 31–38. es_ES
dc.description.references Hug-Iten, S., Escher, F., & Conde-Petit, B. (2003). Staling of bread: role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chemistry., 80(6), 654–661. es_ES
dc.description.references Jakubczyk, E., Marzec, A., & Lewicki, P. P. (2008). Relationship between water activity of crisp bread and its mechanical properties and structure. Polish Journal of Food and Nutrition Sciences, 58(1), 45–51. es_ES
dc.description.references Luyten, A., Pluter, J. J., & Van Vliet, T. (2004). Crispy/crunchy crusts of cellular solid foods: a literature review with discussion. Journal of Texture Studies, 35, 445–492. es_ES
dc.description.references Potter, N. N., & Hotchkiss, J. H. (1998). Food dehydration and concentration. In N. N. Potter & J. H. Hotchkiss (Eds.), Food Science (5th ed.). New York: Aspen Publishers. es_ES
dc.description.references Primo-Martin, C., Van de Pijpekamp, A., Van Vliet, T., Jongh, H. H. J., Plijter, J. J., & Hamer, R. J. (2006). The role of the gluten network in the crispness of bread crust. Journal of Cereal Science, 43, 342–352. es_ES
dc.description.references Primo-Martin, C., Sozer, N., Hamer, R. J., & Van Vliet, T. (2009). Effect of water activity on fracture and acoustic characteristics of a crust model. Journal of Food Engineering, 90, 277–284. es_ES
dc.description.references Roudaut, G., Dacremont, C., & Le Meste, M. (1998). Influence of water on the crispness of cereal-based foods: acoustic, mechanical, and sensory studies. Journal of Texture Studies, 29, 199–213. es_ES
dc.description.references Roudaut, G., Dacremont, C., Pamies, B. V., Colas, B., & Le Meste, M. (2002). Crispness: a critical review on sensory and material science approaches. Trends in Food Science and Technology, 13, 217–227. es_ES
dc.description.references Rojas JA (2000) Uso combinado de hidrocoloides y alfa-amilasa como mejorantes en panificación. Dissertation PhD Thesis. Universidad Politécnica de Valencia es_ES
dc.description.references Rosell, C. M. (2007). Vitamin and mineral fortification of bread. In B. Hamaker (Ed.), Technology of functional cereal products. Cambridge: Woodhead Publishing Ltd. es_ES
dc.description.references Rosell, C. M. (2011). The science of doughs and bread quality. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Flour and breads and their fortification in health and disease prevention (pp. 3–14). London: Academic. es_ES
dc.description.references Rosell CM, Altamirano-Fortoul R & Hernando I (2011) Mechanical properties of bread crust by puncture test and the effect of sprayed enzymes. In: Proceedings of 6th International Congress Flour. Bread’11, 8th Croatian Congress of Cereal Technologist, 12–14 October 2011, Opatija, Croatia. ISSN 1848–2562. es_ES
dc.description.references Sahlström, S., & Brathen, E. (1997). Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chemistry, 58, 75–80. es_ES
dc.description.references Sharma K & Singh J (2010) Enzymes in baking industry. Panesar, P.S.; Marwaha, S.S and Chopra, H.K. (Eds), Enzymes in food processing, fundamentals and potential applications, IK International Publishing House Pvt. Ltd, New Delhi, India. es_ES
dc.description.references Stokes, D. J., & Donald, A. M. (2000). In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). Journal of Materials Science, 35, 599–607. es_ES
dc.description.references Tsukakoshi, Y., Naito, S., & Ishida, N. (2008). Fracture intermittency during a puncture test of cereal snacks and its relation to porous structure. Food Research International, 41, 909–917. es_ES
dc.description.references Van Benschop CHM, Terdu AG & Hille JDR (2012) Baking enzyme composition as SSL replacer. Patent No.US2012164272. es_ES
dc.description.references Van Eijk JH (1991) Retarding the firming of bread crumb during storage. Patent No. US5023094. es_ES
dc.description.references Van Hecke, E., Allaf, K., & Bouvier, J. M. (1998). Texture and structure of crispy-puffed food products—part II: mechanical properties in puncture. Journal of Texture Studies, 29, 617–632. es_ES
dc.description.references Vanin, F. M., Lucas, T., & Trystram, G. (2009). Crust formation and its role during bread baking. Trends in Food Science and Technology, 20, 333–343. es_ES
dc.description.references Van Nieuwenhuijzen, N. H., Primo-Martin, C., Meinders, M. B. J., Tromp, R. H., Hamer, R. J., & Van Vliet, T. (2008). Water content or water activity: what rules crispy behavior in bread crust? Journal of Agricultural and Food Chemistry, 56, 6432–6438. es_ES
dc.description.references Van Oort, M. (2010). Enzymes in bread making. In R. J. Whitehurst & M. Van Oort (Eds.), Enzymes in food technology (2nd ed.). Iowa: Wiley-Blackwell. es_ES
dc.description.references Vidal, F.D., Guerrety, A.B. (1979) Antistaling agent for bakery products. Patent No. US54160848. es_ES
dc.description.references Wählby, U., & Skjoldebrand, C. (2002). Reheating characteristic of crust formed on buns, and crust formation. Journal of Food Engineering, 53, 177–184. es_ES
dc.description.references Würsch, P., & Gumy, D. (1994). Inhibition of amylopectin retrogradation by partial beta-amylosis. Carbohydrate Research, 256, 129–137. es_ES
dc.description.references Xiong, X., Narsimhan, G., & Okos, M. R. (1991). Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous foods. Journal of Food Engineering, 15, 187–208. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem