- -

Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings

Mostrar el registro completo del ítem

Prats Boluda, G.; Ye Lin, Y.; García Breijo, E.; Ibáñez Civera, FJ.; Garcia Casado, FJ. (2012). Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Measurement Science and Technology. 23(12):1-10. https://doi.org/10.1088/0957-0233/23/12/125703

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62416

Ficheros en el ítem

Metadatos del ítem

Título: Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings
Autor: Prats Boluda, Gema Ye Lin, Yiyao García Breijo, Eduardo Ibáñez Civera, Francisco Javier Garcia Casado, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
Bioelectrical surface recordings are usually performed by unipolar or bipolar disc electrodes even though they entail the serious disadvantage of having poor spatial resolution. Concentric ring electrodes give improved ...[+]
Palabras clave: Flexible electrodes , Concentric ring electrodes , Laplacian techniques , Bioelectrical surface recording
Derechos de uso: Reserva de todos los derechos
Fuente:
Measurement Science and Technology. (issn: 0957-0233 )
DOI: 10.1088/0957-0233/23/12/125703
Editorial:
IOP Publishing Ltd
Versión del editor: http://dx.doi.org/10.1088/0957-0233/23/12/125703
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-16945/ES/APLICACION DE TECNICAS LAPLACIANAS PARA LA MONITORIZACION DE LA ACTIVIDAD ELECTRICA DEL MUSCULO LISO HUMANO: ENFASIS EN ELECTROHISTEROGRAMA/
info:eu-repo/grantAgreement/UPV//PAID-2009-2298/
Agradecimientos:
This research was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945) and by the Universitat Politecnica de Valencia (PAID 2009/10-2298). The proof-reading of this paper was funded by the ...[+]
Tipo: Artículo

References

Malmivuo, J., & Plonsey, R. (1995). BioelectromagnetismPrinciples and Applications of Bioelectric and Biomagnetic Fields. doi:10.1093/acprof:oso/9780195058239.001.0001

Gevins, A. (1989). Dynamic functional topography of cognitive tasks. Brain Topography, 2(1-2), 37-56. doi:10.1007/bf01128842

Bradshaw, L. A., Wijesinghe, R. S., & Wikswo, Jr., J. P. (2001). Spatial Filter Approach for Comparison of the Forward and Inverse Problems of Electroencephalography and Magnetoencephalography. Annals of Biomedical Engineering, 29(3), 214-226. doi:10.1114/1.1352641 [+]
Malmivuo, J., & Plonsey, R. (1995). BioelectromagnetismPrinciples and Applications of Bioelectric and Biomagnetic Fields. doi:10.1093/acprof:oso/9780195058239.001.0001

Gevins, A. (1989). Dynamic functional topography of cognitive tasks. Brain Topography, 2(1-2), 37-56. doi:10.1007/bf01128842

Bradshaw, L. A., Wijesinghe, R. S., & Wikswo, Jr., J. P. (2001). Spatial Filter Approach for Comparison of the Forward and Inverse Problems of Electroencephalography and Magnetoencephalography. Annals of Biomedical Engineering, 29(3), 214-226. doi:10.1114/1.1352641

Bradshaw, L. A., Richards, W. O., & Wikswo, J. P. (2001). Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Medical & Biological Engineering & Computing, 39(1), 35-43. doi:10.1007/bf02345264

Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2005). Noninvasive Measurement and Analysis of Intestinal Myoelectrical Activity Using Surface Electrodes. IEEE Transactions on Biomedical Engineering, 52(6), 983-991. doi:10.1109/tbme.2005.846730

SippensGroenewegen, A., Peeters, H. A. P., Jessurun, E. R., Linnenbank, A. C., Robles de Medina, E. O., Lesh, M. D., & van Hemel, N. M. (1998). Body Surface Mapping During Pacing at Multiple Sites in the Human Atrium. Circulation, 97(4), 369-380. doi:10.1161/01.cir.97.4.369

Lian, J., Li, G., Cheng, J., Avitall, B., & He, B. (2002). Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Medical & Biological Engineering & Computing, 40(6), 650-659. doi:10.1007/bf02345304

Wu, D., Tsai, H. C., & He, B. (1999). On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering, 27(6), 731-745. doi:10.1114/1.224

Koka, K., & Besio, W. G. (2007). Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. Journal of Neuroscience Methods, 165(2), 216-222. doi:10.1016/j.jneumeth.2007.06.007

Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ye-Lin, Y. (2011). Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Medical Engineering & Physics, 33(4), 446-455. doi:10.1016/j.medengphy.2010.11.009

He, B., & Cohen, R. J. (1992). Body surface Laplacian mapping of cardiac electrical activity. The American Journal of Cardiology, 70(20), 1617-1620. doi:10.1016/0002-9149(92)90471-a

Besio, W., Aakula, R., Koka, K., & Dai, W. (2006). Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials. Annals of Biomedical Engineering, 34(3), 426-435. doi:10.1007/s10439-005-9054-8

Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Ponce, J. L., & Martinez-de-Juan, J. L. (2009). Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiological Measurement, 30(9), 885-902. doi:10.1088/0967-3334/30/9/002

Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526-530. doi:10.1016/0013-4694(75)90056-5

Perrin, F., Pernier, J., Bertnard, O., Giard, M. ., & Echallier, J. . (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75-81. doi:10.1016/0013-4694(87)90141-6

Nunez, P. L., & Westdorp, A. F. (1994). The surface laplacian, high resolution EEG and controversies. Brain Topography, 6(3), 221-226. doi:10.1007/bf01187712

Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1996). Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topography, 8(4), 355-366. doi:10.1007/bf01186911

Farina, D., & Cescon, C. (2001). Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Transactions on Biomedical Engineering, 48(11), 1326-1334. doi:10.1109/10.959328

G. Besio, C. C. Lu, P. P. Tarjan, W. (2001). A Feasibility Study for Body Surface Cardiac Propagation Maps of Humans from Laplacian Moments of Activation. Electromagnetics, 21(7-8), 621-632. doi:10.1080/027263401752246243

Li, G., Wang, Y., Lin, L., Jiang, W., Wang, L. L., Lu, S. C.-Y., & Besio, W. G. (2005). Active Laplacian electrode for the data-acquisition system of EHG. Journal of Physics: Conference Series, 13, 330-335. doi:10.1088/1742-6596/13/1/077

Engel, J., Chen, J., & Liu, C. (2003). Development of polyimide flexible tactile sensor skin. Journal of Micromechanics and Microengineering, 13(3), 359-366. doi:10.1088/0960-1317/13/3/302

Papakostas, T. V., Lima, J., & Lowe, M. (s. f.). A large area force sensor for smart skin applications. Proceedings of IEEE Sensors. doi:10.1109/icsens.2002.1037366

Stieglitz, T. (2001). Flexible biomedical microdevices with double-sided electrode arrangements for neural applications. Sensors and Actuators A: Physical, 90(3), 203-211. doi:10.1016/s0924-4247(01)00520-9

Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157-1165. doi:10.1109/tbme.1986.325695

Besio, W., & Chen, T. (2007). Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiological Measurement, 28(5), 515-529. doi:10.1088/0967-3334/28/5/006

Besio, G., Koka, K., Aakula, R., & Weizhong Dai. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926-933. doi:10.1109/tbme.2005.863887

Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., & Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20(10), 2019-2026. doi:10.1016/j.bios.2004.09.022

Reddy, A. S. G., Narakathu, B. B., Atashbar, M. Z., Rebros, M., Rebrosova, E., & Joyce, M. K. (2011). Gravure Printed Electrochemical Biosensor. Procedia Engineering, 25, 956-959. doi:10.1016/j.proeng.2011.12.235

Gruetzmann, A., Hansen, S., & Müller, J. (2007). Novel dry electrodes for ECG monitoring. Physiological Measurement, 28(11), 1375-1390. doi:10.1088/0967-3334/28/11/005

LI, G., LIAN, J., SALLA, P., CHENG, J., RAMACHANDRA, I., SHAH, P., … HE, B. (2003). Body Surface Laplacian Electrocardiogram of Ventricular Depolarization in Normal Human Subjects. Journal of Cardiovascular Electrophysiology, 14(1), 16-27. doi:10.1046/j.1540-8167.2003.02199.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem