- -

A reciclable bifuctional acid-base organocatalyst with ionic liquid character. The role of sites separation and spatial configuration on different condensation reaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A reciclable bifuctional acid-base organocatalyst with ionic liquid character. The role of sites separation and spatial configuration on different condensation reaction

Mostrar el registro completo del ítem

Corma Canós, A.; Boronat Zaragoza, M.; Climent Olmedo, MJ.; Iborra Chornet, S.; Montón Molina, R.; Sabater Picot, MJ. (2011). A reciclable bifuctional acid-base organocatalyst with ionic liquid character. The role of sites separation and spatial configuration on different condensation reaction. Physical Chemistry Chemical Physics. 13(38):17255-17261. https://doi.org/10.1039/c1cp21986c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62442

Ficheros en el ítem

Metadatos del ítem

Título: A reciclable bifuctional acid-base organocatalyst with ionic liquid character. The role of sites separation and spatial configuration on different condensation reaction
Autor: Corma Canós, Avelino Boronat Zaragoza, Mercedes Climent Olmedo, María José Iborra Chornet, Sara Montón Molina, Raquel Sabater Picot, Mª José
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
A series of bifunctional organic catalysts containing acid and basic sites with ionic liquid characteristics have been prepared and their catalytic activity and reaction coordinate for aldol and Knoevenagel condensations ...[+]
Palabras clave: LEWIS-ACID , AMINE CATALYSTS , ACTIVATION , CHALCONES , CHEMICALS , BIOMASS
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/c1cp21986c
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c1cp21986c
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//MAT2006-14274-C02-01/ES/DISEÑO MOLECULAR DE NANOMATERIALES ESTRUCTURADOS ORGANICOS-INORGANICOS PARA SU APLICACION EN CATALISIS, SEPARACION DE GASES Y BIOMEDICA./
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F130/ES/Química sostenible: Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas./
Agradecimientos:
We thank Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN (Project MAT2006-14274-C02-01), Generalitat Valenciana (Project PROMETEO/2008/130), and Fundacion Areces for financial support.
Tipo: Artículo

References

Motokura, K., Tada, M., & Iwasawa, Y. (2008). Acid-Base Bifunctional Catalytic Surfaces for Nucleophilic Addition Reactions. Chemistry - An Asian Journal, 3(8-9), 1230-1236. doi:10.1002/asia.200800126

Gröger, H. (2001). The Development of New Monometallic Bifunctional Catalysts with Lewis acidand Lewis Base Properties, and their Application in Asymmetric Cyanation Reactions. Chemistry - A European Journal, 7(24), 5246-5251. doi:10.1002/1521-3765(20011217)7:24<5246::aid-chem5246>3.0.co;2-o

Kanai, M., Kato, N., Ichikawa, E., & Shibasaki, M. (2005). Recent progress in Lewis acid-Lewis base bifunctional asymmetric catalysis. Pure and Applied Chemistry, 77(12), 2047-2052. doi:10.1351/pac200577122047 [+]
Motokura, K., Tada, M., & Iwasawa, Y. (2008). Acid-Base Bifunctional Catalytic Surfaces for Nucleophilic Addition Reactions. Chemistry - An Asian Journal, 3(8-9), 1230-1236. doi:10.1002/asia.200800126

Gröger, H. (2001). The Development of New Monometallic Bifunctional Catalysts with Lewis acidand Lewis Base Properties, and their Application in Asymmetric Cyanation Reactions. Chemistry - A European Journal, 7(24), 5246-5251. doi:10.1002/1521-3765(20011217)7:24<5246::aid-chem5246>3.0.co;2-o

Kanai, M., Kato, N., Ichikawa, E., & Shibasaki, M. (2005). Recent progress in Lewis acid-Lewis base bifunctional asymmetric catalysis. Pure and Applied Chemistry, 77(12), 2047-2052. doi:10.1351/pac200577122047

Shen, Y., Feng, X., Li, Y., Zhang, G., & Jiang, Y. (2003). A mild and efficient cyanosilylation of ketones catalyzed by a Lewis acid–Lewis base bifunctional catalyst. Tetrahedron, 59(30), 5667-5675. doi:10.1016/s0040-4020(03)00908-6

Kanemasa, S., & Ito, K. (2004). Double Catalytic Activation with Chiral Lewis Acid and Amine Catalysts. European Journal of Organic Chemistry, 2004(23), 4741-4753. doi:10.1002/ejoc.200400277

Ma, J.-A., & Cahard, D. (2004). Towards Perfect Catalytic Asymmetric Synthesis: Dual Activation of the Electrophile and the Nucleophile. Angewandte Chemie International Edition, 43(35), 4566-4583. doi:10.1002/anie.200300635

Wang, Y., Li, H., Wang, Y.-Q., Liu, Y., Foxman, B. M., & Deng, L. (2007). Asymmetric Diels−Alder Reactions of 2-Pyrones with a Bifunctional Organic Catalyst. Journal of the American Chemical Society, 129(20), 6364-6365. doi:10.1021/ja070859h

Lin, Y.-M., Boucau, J., Li, Z., Casarotto, V., Lin, J., Nguyen, A. N., & Ehrmantraut, J. (2007). A Lewis Acid−Lewis Base Bifunctional Catalyst from a New Mixed Ligand. Organic Letters, 9(4), 567-570. doi:10.1021/ol0626903

Corma, A., Ródenas, T., & Sabater, M. (2010). A Bifunctional Pd/MgO Solid Catalyst for the One-Pot Selective N-Monoalkylation of Amines with Alcohols. Chemistry - A European Journal, 16(1), 254-260. doi:10.1002/chem.200901501

Ruiz, V. R., Corma, A., & Sabater, M. J. (2010). New route for the synthesis of benzimidazoles by a one-pot multistep process with mono and bifunctional solid catalysts. Tetrahedron, 66(3), 730-735. doi:10.1016/j.tet.2009.11.048

Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519

Boronat, M., Concepción, P., Corma, A., Navarro, M. T., Renz, M., & Valencia, S. (2009). Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis. Physical Chemistry Chemical Physics, 11(16), 2876. doi:10.1039/b821297j

Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018

Boronat, M., Corma, A., Renz, M., & Viruela, P. M. (2006). Predicting the Activity of Single Isolated Lewis Acid Sites in Solid Catalysts. Chemistry - A European Journal, 12(27), 7067-7077. doi:10.1002/chem.200600478

Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. doi:10.1016/j.jcat.2009.11.001

Climent, M. J., Corma, A., Iborra, S., Mifsud, M., & Velty, A. (2010). New one-pot multistep process with multifunctional catalysts: decreasing the E factor in the synthesis of fine chemicals. Green Chem., 12(1), 99-107. doi:10.1039/b919660a

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98

Bass, J. D., Solovyov, A., Pascall, A. J., & Katz, A. (2006). Acid−Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:  A Comparative Investigation of Model Primary Amine Catalysts. Journal of the American Chemical Society, 128(11), 3737-3747. doi:10.1021/ja057395c

Vasella, A., Davies, G. J., & Böhm, M. (2002). Glycosidase mechanisms. Current Opinion in Chemical Biology, 6(5), 619-629. doi:10.1016/s1367-5931(02)00380-0

Drexler, M. (2003). The effect of solvents on the heterogeneous synthesis of flavanone over MgO. Journal of Catalysis, 214(1), 136-145. doi:10.1016/s0021-9517(02)00013-1

Fuentes, A., Marinas, J. M., & Sinisterra, J. V. (1987). Catalyzed synthesis of chalcones under interfacial solid-liquid conditions with ultrasound. Tetrahedron Letters, 28(39), 4541-4544. doi:10.1016/s0040-4039(00)96558-4

Climent, M. ., Corma, A., Iborra, S., & Velty, A. (2004). Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. Journal of Catalysis, 221(2), 474-482. doi:10.1016/j.jcat.2003.09.012

Shen, J., Wang, H., Liu, H., Sun, Y., & Liu, Z. (2008). Brønsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. Journal of Molecular Catalysis A: Chemical, 280(1-2), 24-28. doi:10.1016/j.molcata.2007.10.021

Ballesteros, J. F., Sanz, M. J., Ubeda, A., Miranda, M. A., Iborra, S., Paya, M., & Alcaraz, M. J. (1995). Synthesis and Pharmacological Evaluation of 2’-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation. Journal of Medicinal Chemistry, 38(14), 2794-2797. doi:10.1021/jm00014a032

Yit, C. C., & Das, N. P. (1994). Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation. Cancer Letters, 82(1), 65-72. doi:10.1016/0304-3835(94)90147-3

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244

Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. Journal of the American Chemical Society, 99(15), 4907-4917. doi:10.1021/ja00457a005

Davis, L. P., Guidry, R. M., Williams, J. R., Dewar, M. J. S., & Rzepa, H. S. (1981). MNDO calculations for compounds containing aluminum and boron. Journal of Computational Chemistry, 2(4), 433-445. doi:10.1002/jcc.540020412

Hill, H. A. O., Lobb, R. R., Sharp, S. L., Stokes, A. M., Harris, J. I., & Jack, R. S. (1976). Metal-replacement studies in Bacillus stearothermophilus aldolase and a comparison of the mechanisms of class I and class II aldolases. Biochemical Journal, 153(3), 551-560. doi:10.1042/bj1530551

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem